• Title/Summary/Keyword: energy meter

Search Result 362, Processing Time 0.035 seconds

A Study on the Evaluation of Heating Value of Natural Gas Using SGERG Equation and a Specific Gravity Meter (비중계와 SGERG 방정식을 이용한 천연가스 열량 산정에 관한 연구)

  • 하영철;이강진
    • Journal of Energy Engineering
    • /
    • v.9 no.4
    • /
    • pp.303-308
    • /
    • 2000
  • 천연가스 도입 다변화 정책이 시행된 이후 공급 천연가스의 조성이 산지별로 적지 않게 차이나고 있으며 이에 따라 부피와 열량으로 이원화된 기존 천연가스 상거래 단위 체계를 열량 단위로 일원화하는 방안이 검토되고 있다. 열량을 상거래 단위로 하기 위해서는 고가의 가스분석기사 필요하지만 공급량이 극히 적은 상당수 공급설비에까지 이를 적용하기는 어려우며 이로 인해 보다 경제적인 방안이 모색되고 있다. 이러한 방안의 하나로 본 연구에서는 SGERG식과 비중계를 이용한 열량산정 방법을 분석해 보았다. 이를 위해 압축계수식인 SGERG식을 열량식으로 변형하고 불확도 분석을 하였다. 또한 열량계산에 필요한 비중, 이산화탄소 함량, 질소 함량의 측정 또는 예측의 타당성도 검토했고 실제 현장 데이터를 통해 본 방법의 적정성도 확인하였다. 그 결과 본 연구에서 제시한 방법을 이용하면 가스분석기와 유사한 불확도로 열량 산정을 할 수 있음을 확인하였다.

  • PDF

Thermal and Electrical Properties of Conductive Polymer and PMMA, Eccogel Blend (도전성 고분자와 PMMA 및 Eccogel Blend의 열적 성질 및 전기적 특성에 관한 연구)

  • Park, Seong-Ja;Kim, Byung-Chul;Kim, Dong-Keun;Seul, Soo-Duk
    • Elastomers and Composites
    • /
    • v.24 no.3
    • /
    • pp.185-192
    • /
    • 1989
  • The thermal degradation of the homopolymer poly(methyl methacrylate)(PMMA)/tetra cyano quino dimethane(TCNQ) blend and Eccogel/TCNQ blend were carried out using the thermogravimetric method in the stream of nitrogen gas with 60ml/min at various heating rate from 1 to $20^{\circ}C/min$. Friedman and Ozawa mathermatical methods were used to obtain the value of activation energy. Produced electrical properties and activation energy by electric conductivity method that used LCR meter.

  • PDF

Loads and motions for a spar-supported floating offshore wind turbine

  • Sultania, Abhinav;Manuel, Lance
    • Wind and Structures
    • /
    • v.22 no.5
    • /
    • pp.525-541
    • /
    • 2016
  • An offshore wind turbine supported by a spar buoy floating platform is the subject of this study on tower and rotor extreme loads. The platform, with a 120-meter draft and assumed to be sited in 320 meters of water, supports a 5 MW wind turbine. A baseline model for this turbine developed at the National Renewable Energy Laboratory (NREL) is employed in stochastic response simulations. The support platform, along with the mooring system consisting of three catenary lines, chosen for loads modeling, is based on the "Hywind" floating wind turbine concept. Our interest lies in gaining an understanding of the dynamic coupling between the support platform motion and the turbine loads. We first investigate short-term response statistics using stochastic simulation for a range of different environmental wind and wave conditions. From this study, we identify a few "controlling" environmental conditions for which long-term turbine load statistics and probability distributions are established.

Quantum dot and their applications (양자점과 응용기술)

  • Son, Dong Ick
    • Vacuum Magazine
    • /
    • v.4 no.4
    • /
    • pp.4-13
    • /
    • 2017
  • Quantum structures containing nanoparticles have attracted much attention because of their promising potential applications in electronic and optoelectronic devices operating at lower currents and higher temperatures. The quantum dot is a particle of matter so small that the addition or removal of an electron changes its properties in some useful way. The Quantum dots typically have dimensions measured in nanometers, where one nanometer is 10-9 meter or a millionth of a millimeter. The emission and absorption spectra corresponding to the energy band gap of the quantum dot is governed by quantum confinement principles in an infinite square well potential. The energy band gap increases with a decrease in size of the quantum dot. In this review paper, we will discuss the quantum dot and their application.

Maximum Power Analysis Simulator Development & Lighting Installation Control Simulation (최대전력 분석시뮬레이터 개발 및 조명설비 제어 시뮬레이션)

  • Chang, Hong-Soon;Han, Young-Sub;Soe, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.95-99
    • /
    • 2013
  • The maximum power analysis simulator took advantage of the facilities and power consumption reduction simulator test scenario development and testing of improvement in the scenario. As a maximum demand power controller, Maximum power analysis simulator performs control and disperasion of maximum demand power by calculating base power, load forecast, and present power which are based on signal of watt-hour meter to keep the electricity under the target. In addition, various algorithms to select appropriate control methode on each of the light installations through the peak demand power is configured to management. The simulation shows the success of control power for the specified target controlled by five sequential lighting installations.

Energy Monitoring System with IoT Devices (IoT 디바이스 기반 에너지 모니터링 및 분석 시스템)

  • Lim, Hojung;Kang, Jeonghoon;Kim, Sanghan;Jung, Hyedong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.900-903
    • /
    • 2016
  • A variety of measures in various fields, buildings, factories, offices, supermarkets, etc. through a sensor installed for energy savings and user convenience are transmitted and received by the cloud server. Also, this kind of sensor service increases considering the user's convenience. In this paper, we research a variety of meter data linkage between oracle database and time series database, and data analysis.

  • PDF

The method of in-situ ASTR method diagnosing wall U-value in existing deteriorated houses - Analysis of influence of internal surface total heat transfer rate -

  • Kim, Seo-Hoon;Kim, Jong-Hun;Jeong, Hakgeun;Song, Kyoo-dong
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.41-48
    • /
    • 2017
  • Purpose : Currently, 25% of the domestic energy consumption structure is used as building energy, and more than 18% of this energy is consumed in the residential. Accordingly, various efforts and policies that can save energy of the building is being performed. The various researchers are conducting research to diagnose the thermal performance of existing buildings. This study is to apply in the field of precision thermal insulation performance diagnostic method for thermal performance analysis of existing detached house in Seoul, Gangreung, Gyeongju, Pohang. And this paper is analyzed quantitatively measure the existing detached house energy performance. Method: Research methodology analyzed the thermal performance over the Heat Flow Meter method by applying the measurement process and method by applying the criteria of ISO 9869-1 & ASTR method. In this study, the surface heat transfer coefficient was calibrated by applying indoor surface heat transfer resistance with reference to ISO 6946 standard. The measurement error rate between the HFM diagnosis method and the ASTR diagnosis method was reduced and the measurement reliability was obtained through measurement method error verification. Result : As a result of the study, the thermal performance vulnerable parts of the building were quantitatively analyzed, and presented for methods which can be improved capable of efficient energy use buildings.

Building Energy Time Series Data Mining for Behavior Analytics and Forecasting Energy consumption

  • Balachander, K;Paulraj, D
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.1957-1980
    • /
    • 2021
  • The significant aim of this research has always been to evaluate the mechanism for efficient and inherently aware usage of vitality in-home devices, thus improving the information of smart metering systems with regard to the usage of selected homes and the time of use. Advances in information processing are commonly used to quantify gigantic building activity data steps to boost the activity efficiency of the building energy systems. Here, some smart data mining models are offered to measure, and predict the time series for energy in order to expose different ephemeral principles for using energy. Such considerations illustrate the use of machines in relation to time, such as day hour, time of day, week, month and year relationships within a family unit, which are key components in gathering and separating the effect of consumers behaviors in the use of energy and their pattern of energy prediction. It is necessary to determine the multiple relations through the usage of different appliances from simultaneous information flows. In comparison, specific relations among interval-based instances where multiple appliances use continue for certain duration are difficult to determine. In order to resolve these difficulties, an unsupervised energy time-series data clustering and a frequent pattern mining study as well as a deep learning technique for estimating energy use were presented. A broad test using true data sets that are rich in smart meter data were conducted. The exact results of the appliance designs that were recognized by the proposed model were filled out by Deep Convolutional Neural Networks (CNN) and Recurrent Neural Networks (LSTM and GRU) at each stage, with consolidated accuracy of 94.79%, 97.99%, 99.61%, for 25%, 50%, and 75%, respectively.

The Bone Mineral Density Value According to the Operating Time of the Dual Energy X-ray (이중 에너지 엑스레이 흡수기의 가동 시간에 따른 골밀도 값의 평가)

  • Lee, Hae-Jung;Kim, Ho-Sung;Kim, Eun-Hye
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.40-45
    • /
    • 2010
  • Purpose: Recently, the performance of the X-ray tube was very much improved by the power generation of the technology. However, the overload of equipment is occurred by the increment of the equipment operating time according to the increment of the examination number of cases. The X-ray dose can change by heat occurrence of the X-ray tube due to this. Moreover, the change of the bone mineral density value is possible to occur. Therefore, We tries to whether the change of the bone mineral density value of each equipment according to the difference of the examination number of cases and operating time occur or not. Materials and Methods: The BMD value was measured by the Aluminum Spine Phantom and the European Spine Phantom in each equipment, in order to find out about the difference of the time general classification bone mineral density value by using the Dual energy X-ray absorptiometry. And after scanning each phantom by using X-ray dose meter (Unfors Mult-O-Meter), a dose was measured by the same condition. As to, an average and standard deviation were found and the change of each equipment much BMD value was compared and it evaluated. Results: $Mean{\pm}SD$ of each equipment by using the Aluminum Spine Phantom, A equipment was $1.174{\pm}0.002$, $1.171{\pm}0.005$, $1.173{\pm}0.005$, B equipment was $1.186{\pm}0.003$, $1.187{\pm}0.003$, $1.185{\pm}0.003$, C equipment was $1.180{\pm}0.003$, $1.182{\pm}0.004$, $1.183{\pm}0.002$, D equipment was $1.188{\pm}0.004$, $1.185{\pm}0.003$, $1.185{\pm}0.004$. By using the European Spine Phantom, A equipment was $1.143{\pm}0.006$, $1.153{\pm}0.009$, $1.161{\pm}0.003$, B equipment was $1.134{\pm}0.004$, $1.13{\pm}0.008$, $1.127{\pm}0.015$, C equipment was $1.143{\pm}0.006$, $1.134{\pm}0.01$, $1.133{\pm}0.006$, D equipment was $1.14{\pm}0.001$, $1.122{\pm}0.002$, $1.131{\pm}0.008$, altogether included in the normal range. Conclusion: There was no significant change of the BMD value of using a phantom by time zones. Therefore, if the quality control is made to use the extent management method of the equipment for beginning in the present application, the reliability of the BMD equipment will be able to be enhanced.

  • PDF

Performance of a 5 L Liquid Hydrogen Storage Vessel (5 L급 액체수소 저장용기의 성능특성 연구)

  • KARNG, SARNG WOO;GARCEAU, NATHANIEL;LIM, CHANG MU;BAIK, JONG HOON;KIM, SEO YOUNG;OH, IN-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.3
    • /
    • pp.234-240
    • /
    • 2015
  • In the face of the world's growing energy storage needs, liquid hydrogen offers a high energy density solution for the storage and transport of energy throughout society. A 5 L liquid hydrogen storage tank has been designed, fabricated and tested to investigate boil-off rate of liquid hydrogen. As the insulation plays a key role on the cryogenic vessels, various insulation methods have been employed. To reduce heat conduction loss, the epoxy resin-based insulation supports G-10 were used. To minimize radiation heat loss, vapor cooled radiation shield, multi-layer insulation, and high vacuum were adopted. Mass flow meter was used to measure boil-off rate of the 5 L cryogenic vessel. A series of performance tests were done for liquid nitrogen and liquid hydrogen to compare with design parameters, resulting in the boil-off rate of 1.7%/day for liquid nitrogen and 16.8%/day for liquid hydrogen at maximum.