DOI QR코드

DOI QR Code

Quantum dot and their applications

양자점과 응용기술

  • Published : 2017.12.31

Abstract

Quantum structures containing nanoparticles have attracted much attention because of their promising potential applications in electronic and optoelectronic devices operating at lower currents and higher temperatures. The quantum dot is a particle of matter so small that the addition or removal of an electron changes its properties in some useful way. The Quantum dots typically have dimensions measured in nanometers, where one nanometer is 10-9 meter or a millionth of a millimeter. The emission and absorption spectra corresponding to the energy band gap of the quantum dot is governed by quantum confinement principles in an infinite square well potential. The energy band gap increases with a decrease in size of the quantum dot. In this review paper, we will discuss the quantum dot and their application.

Keywords

References

  1. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulovic, M. G. Bawendi, Nature Photon. 2, 247-250 (2008). https://doi.org/10.1038/nphoton.2008.34
  2. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, K. Char, ACS Nano, 7(10), 9019–9026 (2013) https://doi.org/10.1021/nn403594j
  3. D. I. Son, B. W. Kwon, D. H. Park, W.-S. Seo, Y. Yi, B. Angadi, C.-L. Lee and W. K. Choi, Nature Nanotech. 7. 465-471, (2012). https://doi.org/10.1038/nnano.2012.71
  4. T.-H. Kim, K. -S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W Kim, D. H. Kim, et al., Nat. Photon. 5, 176-182, (2011). https://doi.org/10.1038/nphoton.2011.12
  5. T.-H. Kim, D.-Y. Chung, J. Ku, I. Song, S. Sul, D.-H. Kim, K.-S. Cho, et al., Nat. Commun. 4, 2637, (2013). https://doi.org/10.1038/ncomms3637
  6. J. Kim, O. Voznyy, D. Zhitomirsky, and E. Sargent, Adv. Mater., 25, 4986-5010 (2013). https://doi.org/10.1002/adma.201301947
  7. J. Chen, V. Hardev and J. Yurek, Information Display 1/13, 2 (2013).
  8. Nanomarkets Report # Nano-647 (2013. 9. 23).
  9. A. H. et al. Nature Nanotech. 7, 577-582 (2012). https://doi.org/10.1038/nnano.2012.127
  10. H. Choi, J. H. Ko, Y. H. Kim, S. J. Jeong, Am. Chem. Soc., 135, pp. 5278-5281. (2013) https://doi.org/10.1021/ja400948t
  11. Gi-Hwan, K. et al. Nano energy 13, 491-499 (2015) https://doi.org/10.1016/j.nanoen.2015.03.025
  12. Gi-Hwan, K. et al. Nano lett. 15, 11 7691-7696 (2015) https://doi.org/10.1021/acs.nanolett.5b03677
  13. B. J. Moon, S. Cho, K. S. Lee, S. Bae, S. Lee, J. Y. Hwang, B. Angadi, Y. Yi,M. Park, D. I, Son, Adv. Energy Mater. 5, 1401130 (2015) https://doi.org/10.1002/aenm.201401130
  14. B. J. Moon, K. S. Lee, J. Shim, S. Park, S. H. Kim, S. Bae, M. Park, C. Lee,W. K. Choi, Y. Yi, J. Y. Hwang, D. I. Son, Nano Energy 20, 221–232 (2016) https://doi.org/10.1016/j.nanoen.2015.11.039
  15. J. K. Kim, S. Bae, W. Kim, M. J. Jeong, S. H. Lee, C. Lee, W. K. Choi, J. Y.Hwang, J. H. Park, D. I. Son, Nano Energy 13, 258-266 (2015) https://doi.org/10.1016/j.nanoen.2015.02.013
  16. J. Shim, J. K. Kim, K. S. Lee, C. Lee, M. Ma, W. K. Choi, J. Y. Hwang, H. Y.Yang, B. Angadi, J. H. Park, K. Yu, D. I. Son, Nano Energy 25 9-17 (2016) https://doi.org/10.1016/j.nanoen.2016.04.031