• 제목/요약/키워드: energy harvest

검색결과 262건 처리시간 0.027초

마이크로 수력 에너지원의 수평축 스크류 터빈 : 설계 타당성 연구 (Horizontal-Axis Screw Turbine as a Micro Hydropower Energy Source: A Design Feasibility Study)

  • 삼수딘 모하메드 무르시드;김승준;마상범;김진혁
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.95-104
    • /
    • 2022
  • Micro hydropower is a readily available renewable energy source that can be harvested utilizing hydrokinetic turbines from shallow water canals, irrigation and industrial channel flows, and run-off river stream flows. These sources generally have low head (<1 m) and low velocity which makes it difficult to harvest energy using conventional turbines. A horizontal-axis screw turbine was designed and numerically tested to extract power from such low-head water sources. The 3-bladed screw-type turbine is placed horizontally perpendicular to the incoming flow, partially submerged in a narrow water channel at no-head condition. The turbine hydraulic performances were studied using Computational Fluid Dynamics models. Turbine design parameters such as the shroud diameter, the hub-to-shroud ratios, and the submerged depths were obtained through a steady-state parametric study. The resulting turbine configuration was then tested by solving the unsteady multiphase free-surface equations mimicking an actual open channel flow scenario. The turbine performance in the shallow channel were studied for various Tip Speed Ratios (TSR). The highest power coefficient was obtained at a TSR of 0.3. The turbine was then scaled-up to test its performance on a real site condition at a head of 0.3 m. The highest power coefficient obtained was 0.18. Several losses were observed in the 3-bladed turbine design and to minimize losses, the number of blades were increased to five. The power coefficient improved by 236% for a 5-bladed screw turbine. The fluid losses were minimized by increasing the blade surface area submerged in water. The turbine performance was increased by 74.4% after dipping the turbine to a bottom wall clearance of 30 cm from 60 cm. The final output of the novel horizontal-axis screw turbine showed a 2.83 kW power output at a power coefficient of 0.63. The turbine is expected to produce 18,744 kWh/year of electricity. The design feasibility test of the turbine showed promising results to harvest energy from small hydropower sources.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

소형 압전 에너지 하베스터 구현을 위한 세라믹 크기 변화 (Investigation of piezoelectric ceramic size effect for miniaturing the piezoelectric energy harvester)

  • 김형찬;정우석;강종윤;윤석진;주병권;정대용
    • 센서학회지
    • /
    • 제17권4호
    • /
    • pp.267-272
    • /
    • 2008
  • Energy harvesting from the vibration through the piezoelectric effect has been studied for powering the small wireless sensor nodes. As piezoelectric uni-morph cantilever structure can transfer low vibration to large displacement, this structure was commonly deployed to harvest electric energy from vibrations. Through our previous results, when stress was applied on the cantilever, stress was concentrated on the certain point of the ceramic of the cantilever. In this study, for miniaturing the energy harvester, we investigated how the size of ceramics and the stress distribution in ceramic affects energy harvester characteristics. Even though the area of ceramic was 28.6 % decreased from $10{\times}35{\times}0.5mm^3$ to $10{\times}25{\times}0.5mm^3$, both samples showed almost same maximum power of 0.45 mW and the electro-mechanical coupling factor ($K_{31}$) of 14 % as well. This result indicated that should be preferentially considered to generate high power with small size energy harvester.

태양 일조량 변화에 따른 HALE UAV의 동력 수집/분배/제어 특성 연구 (A Research for Energy Harvest/Distribution/Control of HALE UAV based on the Solar Energy)

  • 남윤광;박토순
    • 한국추진공학회지
    • /
    • 제19권4호
    • /
    • pp.77-84
    • /
    • 2015
  • 최근 친환경적인 항공 추진시스템에 대한 요구가 확대되고 있는 가운데 여러 에너지원을 조합하여 장기 체공하는 무인기용 복합추진시스템을 개발하기 위한 다양한 시도가 이루어지고 있다. 본 연구에서는 주어진 임무형상에 따른 비행체의 에너지 균형 매커니즘을 최적화하기 위하여 태양전지로부터 수집 가능한 에너지와 비행체의 요구에너지 그리고 재생연료전지 구동을 통해 순환에 필요한 동력분배 관리시스템을 분석하였다.

정보와 전력의 동시 전송을 최대화하기 위한 자원 관리 기법 (Resource Management for Maximizing Simultaneous Transfer of Information and Power)

  • 이기송;김민호;조동호
    • 한국통신학회논문지
    • /
    • 제40권8호
    • /
    • pp.1560-1566
    • /
    • 2015
  • 차세대 무선 통신 시스템에서는 효율적인 전력 사용을 위해서 서비스를 받지 않는 수신기는 송신기로부터 전송되는 신호를 이용하여 전력을 획득할 수 있는 환경을 고려하고 있다. 본 논문에서는 최적화 기법을 이용하여 시스템의 총 데이터 전송률과 전력 획득량을 동시에 최대화할 수 있는 서브 채널 및 파워 할당 기법을 제안한다. 시뮬레이션을 통하여 제안 기법은 시스템의 총 데이터 전송률과 전력 획득량을 균형있게 증가시킴을 보였다. 특히, 제안 기법은 기존 기법에 비해 미미한 데이터 전송률 저하를 보이지만 전력 획득량은 크게 증가시켜 효율적인 전력 사용을 가능하게 함을 보였다.

유니몰프 압전소자를 이용한 발전 판넬의 출력특성에 관한 연구 (A Study of Output Characteristics for the Generation Panel using Unimorph Piezoelectric Element)

  • 김용혁
    • 한국전기전자재료학회논문지
    • /
    • 제23권3호
    • /
    • pp.250-259
    • /
    • 2010
  • The ability for energy harvesting via the piezoelectric effect was studied for a unimorph element such as piezo buzzer. A simple equivalent circuit was proposed to predict the energy generated based on the internal stress. Unimorphs with a metal-cavity were used as a driving device of the generation panel. Both the AC open voltage and DC output voltage as a function of pressure period and number of element were measured. For the unimorph generation circuit, DC output voltage varies with pressure period, reaching a maximum value at $470{\mu}F$. The maximum output voltage a according to load resistance was measured at $1M{\Omega}$. Data analysis of the DC output voltage and time constant indicated that number of piezoelectric element of optimum was 60~80. It was found that piezoelectric unimorph has the possibility to be used as the driving element of the electric generation.

역전기습윤현상을 이용한 소형 에너지 수확장치 (Micro Energy Harvesting System Based On Reverse Electro Wetting On Dielectric (REWOD))

  • 조진현;김길연;최상백;전태준;김선민
    • 한국유체기계학회 논문집
    • /
    • 제18권6호
    • /
    • pp.27-30
    • /
    • 2015
  • In this study, we attempted to harvest energy using water droplet based on Reverse Electro Wetting On Dielectric (REWOD) phenomenon between water droplet and dielectric surface without external bias. REWOD device can be fabricated via simple coating process, which is highly economic and easy. We believe that our system is well-suited for IoT(Internet of Things) embedded electronics that require low but consistent electricity. Moreover, our device can be integrated with window to generate electricity upon raindrops.

Mechanism Development and Heading Control of Catamaran-type Sail Drone

  • Man, Dong-Woo;Kim, Hyun-Sik
    • 한국해양공학회지
    • /
    • 제35권5호
    • /
    • pp.360-368
    • /
    • 2021
  • The need for energy harvesting in marine environments is gradually increasing owing to the energy limitation of marine robots. To address this problem, a catamaran-type sail drone (CSD), which can harvest marine energies such as wind and solar, was proposed in a previous study. However, it was designed and manufactured without considering the stability, optimal hull-form, and maintenance. To resolve these problems, a CSD with two keels, a performance estimator, V-shape hulls, and modularized components is proposed and its mechanism is developed in this study. To verify the performance of the CSD, the performance estimation using smoothed-particle hydrodynamics (SPH) and the heading control using fuzzy logic controller (FLC) are performed. Simulation results show the attitude stability of the CSD and the experimental results show the straight path of the CSD according to wind conditions. Therefore, the CSD has potential applications as an energy harvesting system.

Matching game based resource allocation algorithm for energy-harvesting small cells network with NOMA

  • Wang, Xueting;Zhu, Qi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5203-5217
    • /
    • 2018
  • In order to increase the capacity and improve the spectrum efficiency of wireless communication systems, this paper proposes a rate-based two-sided many-to-one matching game algorithm for energy-harvesting small cells with non-orthogonal multiple access (NOMA) in heterogeneous cellular networks (HCN). First, we use a heuristic clustering based channel allocation algorithm to assign channels to small cells and manage the interference. Then, aiming at addressing the user access problem, this issue is modeled as a many-to-one matching game with the rate as its utility. Finally, considering externality in the matching game, we propose an algorithm that involves swap-matchings to find the optimal matching and to prove its stability. Simulation results show that this algorithm outperforms the comparing algorithm in efficiency and rate, in addition to improving the spectrum efficiency.

Analysis of feed value for setting an optimal harvest time of whole crop rice cultivars for silage use

  • Ahn, Eok Keun;Hong, Ha Cheol;Won, Yong Jae;Jung, Kuk Hyun;Lee, Jeong Heui;Hyun, Ung Jo
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.73-73
    • /
    • 2017
  • To set an optimal harvest time of main 7 whole crop silage rice cultivars, Nokyang(Ny), Mogwoo(Mw), Mogyang(My), Jungmo1029(Jm1029), Jungmo1038(Jm1038), Nokwoo(Nw) and Yeongwoo(Yw), based on feed value, we analyzed their feed values such as percent crude protein(CP), crude fat(CF), crude ash(CA), neutral detergent fiber(NDF), acid detergent fiber(ADF) and lignin. It was evaluated every 10 days from heading to 40 days after heading(DAH). Total digestible nutrient(TDN) and relative feed value(RFV) was also calculated from ADF and NDF. As results, CP was generally in decline as increasing DAH in Ny, My, Jm1029, Jm1038 and Yw and decreased to 20 DAH in Mw, decreased after increasing to 30 days in Nw. The CP content of Ny was relatively the highest ranged from 5.3% to 10.1% and Mw the lowest 4.5% to 5.2%, compared to others. CF content tend to decrease as DAH increase in Ny, My and Nw and decreased after increasing to 30 days Jm1029, increased after decreasing to 20 days Jm1038 but was not shown distinct trend of increase or decrease in Mw. Especially, that of Yw's CF gradually increased as harvest time late but relative content the lowest from 1.46% to 2.29% among 7 cultivars. The CA content of Ny, My, Jm1029 and Jm1038 approximately decreased as DAH increased and that of Mw was similar to others after heading, Nw decreased after 10 days and Yw increased after flowering. In all 7 cultivars, NDF and ADF had a tendency to decrease as days accumulated, in particular, Yw was the lowest on 30 DAH and so the content of Yw's TDN the highest(71.5%), while the lowest(67.2%) in Nw. For lignin, particularly, Mw tend to be in decline as DAH increase and was the lowest ranged from 1.34% to 1.87%. ADF analyses allows for the evaluation of in vivo digestible dry matter(DDM) and energy availability and NDF analyses provides the best indication of dry matter intake(DMI). Ultimately, the two factors can be combined to derive RFV for forage. RFV in general increased as DAH increased in all cultivars and was in order, Yw>My>Ny> Jm1038>Mw>Jm1029>Nw on 30 DAH. Taken together when these results, despite a slight increase of TDN after 30 DAH except Yw, considering forage yield potential, digestibility of grains and gradual decrease of CP and CF, the yellow ripe stage, about 30 DAH, was appropriate to harvest whole crop rice for silage use.

  • PDF