• Title/Summary/Keyword: energy gap

Search Result 1,658, Processing Time 0.026 seconds

저온에서의 전기재료

  • Cho, Cheol
    • 전기의세계
    • /
    • v.23 no.1
    • /
    • pp.21-25
    • /
    • 1974
  • BCS이론-고체양자론의 입장에서 초전도성을 구명함 - 즉 paired electron의 기원 paired electron과 normal electron간의 energy gap의 존재 자속의 양자화 Josephson tunmeling effect등에 대해서는 지면관계로 생략했고 주로 현상론적으로 극히 개략적으로 기술하게 되었으며 특히 응용부분에서는 극히 최근의 동향만을 간단하게 소개하였다.

  • PDF

Theoretical Study of Thiazole Adsorption on the (6,0) zigzag Single-Walled Boron Nitride Nanotube

  • Moradi, Ali Varasteh;Peyghan, Ali Ahmadi;Hashemian, Saeede;Baei, Mohammad T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3285-3292
    • /
    • 2012
  • The interaction of thiazole drug with (6,0) zigzag single-walled boron nitride nanotube of finite length in gas and solvent phases was studied by means of density functional theory (DFT) calculations. In both phases, the binding energy is negative and presenting characterizes an exothermic process. Also, the binding energy in solvent phase is more than that the gas phase. Binding energy corresponding to adsorption of thiazole on the BNNT model in the gas and solvent phases was calculated to be -0.34 and -0.56 eV, and about 0.04 and 0.06 electrons is transferred from the thiazole to the nanotube in the phases. The significantly changes in binding energies and energy gap values by the thiazole adsorption, shows the high sensitivity of the electronic properties of BNNT towards the adsorption of the thiazole molecule. Frontier molecular orbital theory (FMO) and structural analyses show that the low energy level of LUMO, electron density, and length of the surrounding bonds of adsorbing atoms help to the thiazole adsorption on the nanotube. Decrease in global hardness, energy gap and ionization potential is due to the adsorption of the thiazole, and consequently, in the both phases, stability of the thiazole-attached (6,0) BNNT model is decreased and its reactivity increased. Presence of polar solvent increases the electron donor of the thiazole and the electrophilicity of the complex. This study may provide new insight to the development of functionalized boron nitride nanotubes as drug delivery systems for virtual applications.

Crystal field splitting energy for $CdGa_2Se_4$ epilayers obtained by photocurrent measurement (광전류 측정으로부터 얻어진 $CdGa_2Se_4$ 에피레이어의 결정장 갈라짐에 대한 에너지)

  • Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.144-145
    • /
    • 2009
  • Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy (HWE) system by evaporating the poly crystal source of $CdGa_2Se_4$ at $630\;^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27\;\times\;10^{17}\;cm^{-3}$, $345\;cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4$/SI(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T) = 2.6400 eV - ($7.721\;{\times}\;10^{-4}\;eV/K)T^2$/(T + 399 K). Using the photocurrent spectra and the Hopfield quasi cubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) for the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_{11}$-exciton peaks.

  • PDF

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

Mechanism of the X-ray and Soft Gamma-ray Emissions from the High Magnetic Field Pulsar: PSR B1509-58

  • Wang, Yu;Takata, Jumpei;Cheng, Kwong Sang
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.2
    • /
    • pp.91-94
    • /
    • 2013
  • We use the outer gap model to explain the spectrum and the energy dependent light curves of the X-ray and soft ${\gamma}$-ray radiations of the spin-down powered pulsar PSR B1509-58. In the outer gap model, most pairs inside the gap are created around the null charge surface and the gap's electric field separates the opposite charges to move in opposite directions. Consequently, the region from the null charge surface to the light cylinder is dominated by the outflow current and that from the null charge surface to the star is dominated by the inflow current. We suggest that the viewing angle of PSR B1509-58 only receives the inflow radiation. The incoming curvature photons are converted to pairs by the strong magnetic field of the star. The X-rays and soft ${\gamma}$-rays of PSR B1509-58 result from the synchrotron radiation of these pairs. The magnetic pair creation requires a large pitch angle, which makes the pulse profile of the synchrotron radiation distinct from that of the curvature radiation. We carefully trace the pulse profiles of the synchrotron radiation with different pitch angles. We find that the differences between the light curves of different energy bands are due to the different pitch angles of the secondary pairs, and the second peak appearing at E > 10 MeV comes from the region near the star, where the stronger magnetic field allows the pair creation to happen with a smaller pitch angle.

Study of the electrical propety for $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$((001) with a direct gap (직접천이 띠간격을 갖는 $Ge_{1-x}$$Sn_x$/$Ge_{1-y}$$Sn_y$(001)의 전기적 특성 연구)

  • 박일수;전상국
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.12
    • /
    • pp.989-995
    • /
    • 2000
  • G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ is a very promising material for the high-speed device due to the fact that electron and hole mobilities for the strained G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ are greatly enhanced. Because G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$ has a direct band gap for the proper combination of x and y, it can be applied to the optoelectronic device. Therefore, the study of the electrical property for G $e_{1-x}$ S $n_{x}$G $e_{1-y}$S $n_{y}$(001) with a direct energy gap is needed. G $e_{1-x}$ S $n_{x}$ layer can not be grown thickly due to the large difference of lattice constants. This fact prefers the structure of the device where electrons and holes move in the plane direction. The transverse mobilities of electron and hole for G $e_{0.8}$S $n_{0.2}$Ge(001) are 2~3 times larger than those for Ge/Ge/ sub0.8/S $n_{0.2}$(001). Therefore, G $e_{0.8}$S $n_{0.2}$Ge(001) is expected to be better than Ge/G $e_{0.8}$S $n_{0.2}$(001) for the development of the high-speed device.h-speed device.device.h-speed device. device.

  • PDF

A Study on the Lap Joint $CO_2$ Laser Welding of Different Gauge Sheets Using ANOVA in Characteristic Zones (특징영역별 분산분석에 의한 이종두께 겹치기 $CO_2$ 레이저 용접에 대한 연구)

  • 이경돈
    • Journal of Welding and Joining
    • /
    • v.20 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • The laser welding in the automotive industries has been used widely for the butt joint of blank sheets rather than the lap joint of automotive body panels. But as a substitute far the spot welding of automotive body panels, the so called three dimensional laser welding will be important far the body panel engineers. Specially the laser welding of body panels with a smooth weld line is applied increasingly, for example, to the side panels. So far, some criteria of the laser weld quality was suggested by in-house regulations or national standards from experiences and/or rule of thumbs. In the manufacturing places, a go or no-go criterion is adopted because of the simplicity or a lack of rational criteria. It is true specially for the selection of the process parameters, which gives the basic causes for the good quality of laser welds. In this study, the effects of joint combination, gap and welding speed on the lap joint $CO_2$ laser welding of two mild steel sheets with different thicknesses are obtained through a $2{\times}3{\times}7$ factorial experiment. The results of the weld quality are statistically analysed using analysis of variance (ANOVA) and compared between two characteristic zones, which are separated by the type of sectional shapes and the level of input energy per volume. The thickness combinations are 0.8mm/1.2mm, 1.2mm/0.8mm of mild steel sheets. The welding speed covers from the deep penetration to the partial penetration. The gap size has three levels of no-gap, 0.16m, and 0.26mm. The bead width, penetration depth and input energy per volume are measured and used as the weld quality criteria.