• Title/Summary/Keyword: energy flux tower

Search Result 40, Processing Time 0.033 seconds

A Study on Retrieval of Storage Heat Flux in Urban Area (우리나라 도심지에서의 저장열 산출에 관한 연구)

  • Lee, Darae;Kim, Honghee;Lee, Sang-Hyun;Lee, Doo-Il;Hong, Jinkyu;Hong, Je-Woo;Lee, Keunmin;Lee, Kyeong-sang;Seo, Minji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.301-306
    • /
    • 2018
  • Urbanization causes urban floods and urban heat island in the summer, so it is necessary to understanding the changes of the thermal environment through urban climate and energy balance. This can be explained by the energy balance, but in urban areas, unlike the typical energy balance, the storage heat flux saved in the building or artificial land cover should be considered. Since the environment of each city is different, there is a difficulty in applying the method of retrieving the storage heat flux of the previous research. Especially, most of the previous studies are focused on the overseas cities, so it is necessary to study the storage heat retrieval suitable for various land cover and building characteristics of the urban areas in Korea. Therefore, the object of this study, it is to derive the regression formula which can quantitatively retrieve the storage heat using the data of the area where various surface types exist. To this end, nonlinear regression analysis was performed using net radiation and surface temperature data as independent variables and flux tower based storage heat estimates as dependent variables. The retrieved regression coefficients were applied to each independent variable to derive the storage heat retrieval regression formula. As a result of time series analysis with flux tower based storage heat estimates, it was well simulated high peak at day time and the value at night. Moreover storage heat retrieved in this study was possible continuous retrieval than flux tower based storage heat estimates. As a result of scatter plot analysis, accuracy of retrieved storage heat was found to be significant at $50.14Wm^{-2}$ and bias $-0.94Wm^{-2}$.

A Study on the Start-up of the Water/Steam Receiver for Solar Power Tower (타워형 태양열 흡수기의 시동특성에 관한 연구)

  • Seo, Ho-Young;Kim, Jong-Kyu;Kang, Yong-Heack
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.157-160
    • /
    • 2008
  • Solar receiver in the solar power tower system has a similarity to a boiler of the thermal power plant in many aspects. However Boiler is operated long time without stopping while solar receiver repeats start and stop every day. The objective of this study is to investigate start-up characteristics of solar receiver. The experimental device was constructed in a bench scale. Basic experimental condition of water/steam was set by 25 bar and $223^{\circ}C$. Initially, the heat was added into risers only, then another experiment with input into drum additionally was done. When the heat flux was valid only risers, it took about 300 minutes until the water temperature in drum reached $223^{\circ}C$. Water temperature of drum was increased by $44^{\circ}C$/hr with 91.14 g/s of water circulation. With additional heat input into drum, 200 minutes was required to reach $223^{\circ}C$. In this case temperature was increased $66^{\circ}C$/hr with 96.5 g/s of water circulation.

  • PDF

Development of Heliostat Aiming Point Allocation Scheme in Heliostat Field Control Algorithm for 200kW Tower Type Solar Thermal Power Plant (200kW 탑형 태양열발전시스템을 위한 헬리오스타트 필드 운영 알고리즘의 헬리오스타트 반사목표점 할당 방안 개발)

  • Park, Young Chil
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.3
    • /
    • pp.21-29
    • /
    • 2014
  • Heliostat field control algorithm is the logics to operate the heliostat field of tower type solar thermal power plant and it could include various methodologies of how to control the heliostat field so as to optimize the energy collection efficiency as well as to reduce the system operating cost. This work, as the first part of the consecutive works, presents heliostat aiming mint allocation scheme which will be used in the heliostat field control algorithm for 200kW solar thermal power plant built in Daegu, Korea. We first discuss the structure of heliostat field control system required for the implementation of aiming scheme developed in this work. Then the methodologies to allocate the heliostat aiming points on the receiver are discussed. The simulated results show that the heliostat aiming point allocation scheme proposed in this work reduces the magnitude of peak heat flux on the receiver more than 40% from the case of which all the heliostats in the field aim at the center of receiver simultaneously. Also it shows that, when the proposed scheme is used, the degradation of heliostat field optical efficiency is relatively small from the maximal optical efficiency the heliostat field could have.

Measurement and Compensation of Heliostat Sun Tracking Error Using BCS (Beam Characterization System) (광특성분석시스템(BCS)을 이용한 헬리오스타트 태양추적오차의 측정 및 보정)

  • Hong, Yoo-Pyo;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.5
    • /
    • pp.502-508
    • /
    • 2012
  • Heliostat, as a concentrator to reflect the incident solar energy to the receiver, is the most important system in the tower-type solar thermal power plant since it determines the efficiency and ultimately the overall performance of solar thermal power plant. Thus, a good sun tracking ability as well as a good optical property of it are required. Heliostat sun tracking system uses usually an open loop control system. Thus the sun tracking error caused by heliostat's geometrical error, optical error and computational error cannot be compensated. Recently use of sun tracking error model to compensate the sun tracking error has been proposed, where the error model is obtained from the measured ones. This work is a development of heliostat sun tracking error measurement and compensation method using BCS (Beam Characterization System). We first developed an image processing system to measure the sun tracking error optically. Then the measured error is modeled in linear polynomial form and neural network form trained by the extended Kalman filter respectively. Finally error models are used to compensate the sun tracking error. We also developed the necessary image processing algorithms so that the heliostat optical properties such as maximum heat flux intensity, heat flux distribution and total reflected heat energy could be analyzed. Experimentally obtained data shows that the heliostat sun tracking accuracy could be dramatically improved using either linear polynomial type error model or neural network type error model. Neural network type error model is somewhat better in improving the sun tracking performance. Nevertheless, since the difference between two error models in compensation of sun tracking error is small, a linear error model is preferred in actual implementation due to its simplicity.

Haenam Paddy-field KoFlux (HPK) Site with Dry Direct-Seeding: Introduction (해남 무논점파 논 KoFlux (HPK) 관측지: 소개)

  • Lee, Seung-Hoon;Kang, Minseok;Kang, Namgoo;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.1
    • /
    • pp.18-33
    • /
    • 2018
  • A new eddy covariance-based flux tower has been established since June 2016 in a dry direct-seeding rice paddy field in southwestern Korea - Haenam Paddy field KoFlux site (HPK). To assess the competitiveness of direct-seeding agricultural technique in the context of climate-smart agriculture, we have been monitoring the $CO_2$, $CH_4$ and energy fluxes continuously. In this communication, we (1) introduce the HPK site and (2) explain the structure and processes of the HPK-specific data processing and quality control. The latter consists of 10-steps data processing and quality control procedures following the KoFlux standardized protocol and explained each step in layman's term. The final data produced during the data processing were stored in NCAM-DAPS (National Center for AgroMeteorology-Data Acquisition and Processing System, http://daps.ncam.kr). We hope that the introduction of new HPK KoFlux site would serve as a platform to facilitate transdisciplinary efforts in the research and education associated with climate-smart agriculture toward sustainability.

Study on the Solar Flux on Facade Variation in Apartment Housing (공동주택의 입면 변화에 따른 일사량 분석 -Skyline 변화를 중심으로-)

  • Lee, Duck-Hyung;Choi, Chang-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.1-9
    • /
    • 2007
  • Recently, the point of view about housing environment in the city has changed from the traditional point of view of the center of housing to the subject of land- utilization-control for interaction of buildings. Right of light is the center of this issue in other words. Also many interests about the beauties of the city have increasing centering around Europe etc. This is to change a city design into the characteristic design from the exiting uniform design. As if reflect this situation, recently we are setting up the night illumination and constructing a building which acted as Land Mark like the Jong-Ro Tower. And Apartment Housing was being built various form deviate from a existing standardized form and skyline. Existing studies about sunshine of Apartment Housing have dealt with just about a standardized Apartment Housing form. So this study analyzed a recently increasing interest for Right of light and change of sunshine environment on Apartment Housing which have a various skyline form.

Assessment of Solar Insolation from COMS: Sulma and Cheongmi Watersheds (천리안 위성의 일사량 검증: 설마천, 청미천)

  • Baek, Jongjin;Byun, Kyunhyun;Kim, Dongkyun;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.137-149
    • /
    • 2013
  • Solar insolation is essential to understand the interaction between the earth and solar system, and it is a significant parameter that is utilized in various research fields including earth science, agriculture, and energy engineering. Although solar insolation is broadly measured in the ground-based observation station, it is difficult to identify the spatial distribution of solar insolation accurately. The remote sensing approach is known to have several benefits because it can provide continuous data sets for large area. In this study, we conducted the validation of solar insolation from COMS in the South Korea by comparing with flux tower observation. The results showed that the correlations between COMS and observation were high in both 30 minutes interval data and daily average data. Thus, we can identify that COMS can provide a reasonable estimate of solar insolation.

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

Estimation of Surface Fluxes Using Noah LSM and Assessment of the Applicability in Korean Peninsula (Noah LSM을 이용한 지표 플럭스 산정 및 한반도에서의 적용성 검토)

  • Jang, Ehsun;Moon, Heewon;Hwang, Seok Hwan;Choi, Minha
    • Journal of Wetlands Research
    • /
    • v.15 no.4
    • /
    • pp.509-518
    • /
    • 2013
  • Understanding of the exchange between the water and energy which is happening between the surface and atmosphere is the basic of studying water resources. To study these, lots of researches using Noah Land Surface Model(LSM) are in progress. Noah LSM is based on energy and water balance equation and simulates various hydrological factors. There are diverse researches with Noah LSM are ongoing in overseas, on the other hand not enough study has been done. Especially there is almost no study using uncoupled Noah LSM in Korea. In this study we used data from Korea Flux Tower in Haenam(HFK) and Gwangneung(GDK) as forcing data to simulate the model and compared its result of net radiation, sensible heat flux and latent heat flux with the observation data to assess the applicability of Noah LSM in Korea. Regression coefficients of the comparison results of Noah LSM and observation show good agreement with the value of 0.83~0.99 at Haenam and 0.64~0.99 at Gwangneung which means Noah LSM can be trusted.

The Great Western Woodlands TERN SuperSite: ecosystem monitoring infrastructure and key science learnings

  • Suzanne M Prober;Georg Wiehl;Carl R Gosper;Leslie Schultz;Helen Langley;Craig Macfarlane
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.272-281
    • /
    • 2023
  • Ecosystem observatories are burgeoning globally in an endeavour to detect national and global scale trends in the state of biodiversity and ecosystems in an era of rapid environmental change. In this paper we highlight the additional importance of regional scale outcomes of such infrastructure, through an introduction to the Great Western Woodlands TERN (Terrestrial Ecosystem Research Network) SuperSite, and key findings from three gradient plot networks that are part of this infrastructure. The SuperSite was established in 2012 in the 160,000 km2 Great Western Woodlands region, in a collaboration involving 12 organisations. This region is globally significant for its largely intact, diverse landscapes, including the world's largest Mediterranean-climate woodlands and highly diverse sandplain shrublands. The dominant woodland eucalypts are fire-sensitive, requiring hundreds of years to regrow after fire. Old-growth woodlands are highly valued by Indigenous and non-Indigenous communities, and managing impacts of climate change and the increasing extent of intense fires are key regional management challenges. Like other TERN SuperSites, the Great Western Woodlands TERN SuperSite includes a core eddy-covariance flux tower measuring exchanges of carbon, water and energy between the vegetation and atmosphere, along with additional environmental and biodiversity monitoring around the tower. The broader SuperSite incorporates three gradient plot networks. Two of these represent aridity gradients, in sandplains and woodlands, informing regional climate adaptation and biodiversity management by characterising biodiversity turnover along spatial climate gradients and acting as sentinels for ecosystem change over time. For example, the sandplains transect has demonstrated extremely high spatial turnover rates in plant species, that challenge traditional approaches to biodiversity conservation. The third gradient plot network represents a 400-year fire-age gradient in Eucalyptus salubris woodlands. It has enabled characterisation of post-fire recovery of vegetation, birds and invertebrates over multi-century timeframes, and provided tools that are directly informing management to reduce stand-replacing fires in eucalypt woodlands. By building regional partnerships and applying globally or nationally consistent methodologies to regional scale questions, ecological observatories have the power not only to detect national and global scale trends in biodiversity and ecosystems, but to directly inform environmental decisions that are critical at regional scales.