DOI QR코드

DOI QR Code

The Great Western Woodlands TERN SuperSite: ecosystem monitoring infrastructure and key science learnings

  • Received : 2023.10.20
  • Accepted : 2023.11.17
  • Published : 2023.12.31

Abstract

Ecosystem observatories are burgeoning globally in an endeavour to detect national and global scale trends in the state of biodiversity and ecosystems in an era of rapid environmental change. In this paper we highlight the additional importance of regional scale outcomes of such infrastructure, through an introduction to the Great Western Woodlands TERN (Terrestrial Ecosystem Research Network) SuperSite, and key findings from three gradient plot networks that are part of this infrastructure. The SuperSite was established in 2012 in the 160,000 km2 Great Western Woodlands region, in a collaboration involving 12 organisations. This region is globally significant for its largely intact, diverse landscapes, including the world's largest Mediterranean-climate woodlands and highly diverse sandplain shrublands. The dominant woodland eucalypts are fire-sensitive, requiring hundreds of years to regrow after fire. Old-growth woodlands are highly valued by Indigenous and non-Indigenous communities, and managing impacts of climate change and the increasing extent of intense fires are key regional management challenges. Like other TERN SuperSites, the Great Western Woodlands TERN SuperSite includes a core eddy-covariance flux tower measuring exchanges of carbon, water and energy between the vegetation and atmosphere, along with additional environmental and biodiversity monitoring around the tower. The broader SuperSite incorporates three gradient plot networks. Two of these represent aridity gradients, in sandplains and woodlands, informing regional climate adaptation and biodiversity management by characterising biodiversity turnover along spatial climate gradients and acting as sentinels for ecosystem change over time. For example, the sandplains transect has demonstrated extremely high spatial turnover rates in plant species, that challenge traditional approaches to biodiversity conservation. The third gradient plot network represents a 400-year fire-age gradient in Eucalyptus salubris woodlands. It has enabled characterisation of post-fire recovery of vegetation, birds and invertebrates over multi-century timeframes, and provided tools that are directly informing management to reduce stand-replacing fires in eucalypt woodlands. By building regional partnerships and applying globally or nationally consistent methodologies to regional scale questions, ecological observatories have the power not only to detect national and global scale trends in biodiversity and ecosystems, but to directly inform environmental decisions that are critical at regional scales.

Keywords

Acknowledgement

The research described involved many individuals in addition to the authors, including Dr Margaret Byrne and Mr Nigel Wessels (DBCA), Dr Neil Gibson, Mr Ian Kealley OAM and Dr Rachel Meissner (previously DBCA), Prof. Stephen van Leeuwen (Curtin University), Prof. Jason Beringer and Dr Caitlin Moore (University of Western Australia), Dr Richard Silberstein (Edith Cowan University), Prof. Will Edwards (James Cook University) and Dr Rachel Standish (Murdoch University). The Great Western Woodlands TERN SuperSite includes the traditional lands of a number of First Nations peoples including Ngadju, Wongi and Noongar Nations Peoples.

References

  1. Anand RR, Paine M. Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Aust J Earth Sci. 2002; 49(1):3-162. https://doi.org/10.1046/j.1440-0952.2002.00912.x.
  2. Andrew ME, Fox E. Modelling species distributions in dynamic landscapes: the importance of the temporal dimension. J Biogeogr. 2020;47(7):1510-29. https://doi.org/10.1111/jbi.13832.
  3. Bissett A, Fitzgerald A, Meintjes T, Mele PM, Reith F, Dennis PG, et al. Introducing BASE: the Biomes of Australian Soil Environments soil microbial diversity database. GigaSci. 2016;5:21. https://doi.org/10.1186/s13742-016-0126-5.
  4. Bloomfield KJ, Cernusak LA, Eamus D, Ellsworth DS, Prentice IC, Wright IJ, et al. A continental-scale assessment of variability in leaf traits: within species, across sites and between seasons. Funct Ecol. 2018;32(6):1492-506. https://doi.org/10.1111/1365-2435.13097.
  5. Borer ET, Harpole WS, Adler PB, Lind EM, Orrock JL, Seabloom EW, et al. Finding generality in ecology: a model for globally distributed experiments. Methods Ecol Evol. 2014;5(1):65-73. https://doi.org/10.1111/2041-210X.12125.
  6. Caddy-Retalic S, Andersen AN, Aspinwall MJ, Breed MF, Byrne M, Christmas MJ, et al. Bioclimatic transect networks: powerful observatories of ecological change. Ecol Evol. 2017;7(13):4607-19. https://doi.org/10.1002/ece3.2995.
  7. Cleverly J, Eamus D, Edwards W, Grant M, Grundy MJ, Held A, et al. TERN, Australia's land observatory: addressing the global challenge of forecasting ecosystem responses to climate variability and change. Environ Res Lett. 2019;14(9):095004. https://doi.org/10.1088/1748-9326/ab33cb.
  8. De Kauwe MG, Medlyn BE, Pitman AJ, Drake JE, Ukkola A, Griebel A, et al. Examining the evidence for decoupling between photosynthesis and transpiration during heat extremes. Biogeosciences. 2019;16(4):903-16. https://doi.org/10.5194/bg-16-903-2019.
  9. Gibson N, Prober S, Meissner R, van Leeuwen S. Implications of high species turnover on the south-western Australian sandplains. PLoS One. 2017;12(2):e0172977. https://doi.org/10.1371/journal.pone.0172977.
  10. Gosper CR, Fox E, Burbidge AH, Craig MD, Douglas TK, Fitzsimons JA, et al. Multi-century periods since fire in an intact woodland landscape favour bird species declining in an adjacent agricultural region. Biol Conserv. 2019a;230:82-90. https://doi.org/10.1016/j.biocon.2018.12.011.
  11. Gosper CR, Pettit MJ, Andersen AN, Yates CJ, Prober SM. Multi-century dynamics of ant communities following fire in Mediterranean-climate woodlands: are changes congruent with vegetation succession? For Ecol Manag. 2015;342:30-8. https://doi.org/10.1016/j.foreco.2015.01.006.
  12. Gosper CR, Prober SM, Yates CJ, Wiehl G. Estimating the time since fire of long-unburnt Eucalyptus salubris (Myrtaceae) stands in the Great Western Woodlands. Aust J Bot. 2013a;61(1):11-21. https://doi.org/10.1071/BT12212.
  13. Gosper CR, Prober SM, Yates CJ. Multi-century changes in vegetation structure and fuel availability in fire-sensitive eucalypt woodlands. For Ecol Manag. 2013b;310:102-9. https://doi.org/10.1016/j.foreco.2013.08.005.
  14. Gosper CR, Watson SJ, Fox E, Burbidge AH, Craig MD, Douglas TK, et al. Fire-mediated habitat change regulates woodland bird species and functional group occurrence. Ecol Appl. 2019b;29(8):e01997. https://doi.org/10.1002/eap.1997.
  15. Gosper CR, Yates CJ, Cook GD, Harvey JM, Liedloff AC, McCaw WL, et al. A conceptual model of vegetation dynamics for the unique obligate-seeder eucalypt woodlands of south-western Australia. Austral Ecol. 2018;43(6):681-95. https://doi.org/10.1111/aec.12613.
  16. Gosper CR, Yates CJ, Fox E, Prober SM. Time since fire and prior fire interval shape woody debris dynamics in obligate-seeder woodlands. Ecosphere. 2019c;10(12):e02927. https://doi.org/10.1002/ecs2.2927.
  17. Gosper CR, Yates CJ, Prober SM. Floristic diversity in fire-sensitive eucalypt woodlands shows a 'U'-shaped relationship with time since fire. J Appl Ecol. 2013c;50(5):1187-96. https://doi.org/10.1111/1365-2664.12120.
  18. Gosper CR, Yates CJ, Prober SM, Wiehl G. Application and validation of visual fuel hazard assessments in dry Mediterranean-climate woodlands. Int J Wildland Fire. 2014;23(3):385-93. https://doi.org/10.1071/wf13096.
  19. Gray DJ. Hydrogeochemistry in the Yilgarn Craton. Geochem Explor Environ Anal. 2001;1:253-64. https://doi.org/10.1144/geochem.1.3.253.
  20. Jucker T, Gosper CR, Wiehl G, Yeoh PB, Raisbeck-Brown N, Fischer FJ, et al. Using multi-platform LiDAR to guide the conservation of the world's largest temperate woodland. Remote Sens Environ. 2023;296:113745. https://doi.org/10.1016/j.rse.2023.113745.
  21. Karan M, Liddell M, Prober SM, Arndt S, Beringer J, Boer M, et al. The Australian SuperSite Network: a continental, long-term terrestrial ecosystem observatory. Sci Total Environ. 2016;568:1263-74. https://doi.org/10.1016/j.scitotenv.2016.05.170.
  22. Keuskamp JA, Dingemans BJJ, Lehtinen T, Sarneel JM, Hefting MM. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol Evol. 2013;4(11):1070-5. https://doi.org/10.1111/2041-210X.12097.
  23. Loescher HW, Vargas R, Mirtl M, Morris B, Pauw J, Yu X, et al. Building a Global Ecosystem Research Infrastructure to address global grand challenges for macrosystem ecology. Earth's Future. 2022;10(5):e2020EF001696. https://doi.org/10.1029/2020EF001696.
  24. O'Donnell AJ, Boer MM, McCaw WL, Grierson PF. Vegetation and landscape connectivity control wildfire intervals in unmanaged semi-arid shrublands and woodlands in Australia. J Biogeogr. 2011;38(1):112-24. https://doi.org/10.1111/j.1365-2699.2010.02381.x.
  25. Prober SM, Thiele KR, Rundel PW, Yates CJ, Berry SL, Byrne M, et al. Facilitating adaptation of biodiversity to climate change: a conceptual framework applied to the world's largest Mediterranean-climate woodland. Clim Chang. 2012;110:227-48. https://doi.org/10.1007/s10584-011-0092-y.
  26. Prober SM, Yuen E, O'Connor M, Schultz L. Ngadju Kala: Ngadju fire knowledge and contemporary fire management in the Great Western Woodlands. Floreat: CSIRO Ecosystem Sciences; 2013.
  27. Prober SM, Yuen E, O'Connor MH, Schultz L. Ngadju kala: Australian Aboriginal fire knowledge in the Great Western Woodlands. Austral Ecol. 2016;41(7):716-32. https://doi.org/10.1111/aec.12377.
  28. Raiter KG, Hobbs RJ, Possingham HP, Valentine LE, Prober SM. Vehicle tracks are predator highways in intact landscapes. Biol Conserv. 2018a;228:281-90. https://doi.org/10.1016/j.biocon.2018.10.011.
  29. Raiter KG, Prober SM, Hobbs RJ, Possingham HP. Lines in the sand: quantifying the cumulative development footprint in the world's largest remaining temperate woodland. Landsc Ecol. 2017;32:1969-86. https://doi.org/10.1007/s10980-017-0558-z.
  30. Raiter KG, Prober SM, Possingham HP, Westcott F, Hobbs RJ. Linear infrastructure impacts on landscape hydrology. J Environ Manag. 2018b;206:446-57. https://doi.org/10.1016/j.jenvman.2017.10.036.
  31. Thorpe AS, Barnett DT, Elmendorf SC, Hinckley ES, Hoekman D, Jones KD, et al. Introduction to the sampling designs of the National Ecological Observatory Network Terrestrial Observation System. Ecosphere. 2016;7(12):e01627. https://doi.org/10.1002/ecs2.1627.
  32. Watson A, Judd S, Watson J, Lam A, Mackenzie D. The extraordinary nature of the Great Western Woodlands. Perth: The Wilderness Society of WA; 2008.
  33. White A, Sparrow B, Leitch E, Foulkes J, Flitton R, Lowe AJ, et al. Aus-Plots rangelands survey protocols manual version 1.2.9. Adelaide: University of Adelaide Press; 2012.
  34. Wiehl G, Andersen A, Prober S, Macfarlane C. Great Western Woodlands Ant Abundance Data. Version 1.0. Terrestrial Ecosystem Research Network. (Dataset). 2023. https://portal.tern.org.au/metadata/TERN/311c1617-bc11-4a32-bfad-af870c373193. Accessed 18 Oct 2023.
  35. Yahdjian L, Sala OE, Pineiro-Guerra JM, Knapp AK, Collins SL, Phillips RP, et al. Why coordinated distributed experiments should go global. BioScience. 2021;71(9):918-27. https://doi.org/10.1093/biosci/biab033.
  36. Yates CJ, Hobbs RJ, Bell RW. Landscape-scale disturbances and regeneration in semi-arid woodlands of southwestern Australia. Pac Conserv Biol. 1994;1(3):214-21. https://doi.org/10.1071/PC940214.
  37. Zanne AE, Flores-Moreno H, Powell JR, Cornwell WK, Dalling JW, Austin AT, et al. Termite sensitivity to temperature affects global wood decay rates. Science. 2022;377(6613):1440-4. https://doi.org/10.1126/science.abo3856.