• Title/Summary/Keyword: energy dispersive X-ray spectroscopy

Search Result 639, Processing Time 0.026 seconds

Aerosol-gel synthesis of ZnO quantum dots dispersed in SiO2 matrix and their characteristics (에어로솔-젤 법을 이용한 SiO2에 분산된 ZnO 양자점의 합성과 그 특성)

  • Kim, Sang-Gyu;Firmansyah, Dudi Adi;Lee, Kwang-Sung;Lee, Donggeun
    • Particle and aerosol research
    • /
    • v.6 no.2
    • /
    • pp.51-59
    • /
    • 2010
  • ZnO quantum dots embedded in a silica matrix without agglomeration were synthesized from $TEOS:Zn(NO_3)_2$ solutions in one-step process by aerosol-gel method. It was successfully demonstrated that the size of ZnO Q-dots could be controlled from 2 to 7 mm verified by a high resolution transmission electron microscope observation. The line scanning energy dispersive X-ray spectroscopy(EDS) revealed that the Q-dots existed preferentially inside SiO2 sphere when Zn/Si < 0.5. However, the Q-dots distributed homogeneously all over the sphere when Zn/Si > 1.0. Blue-shifted UV/Vis absorption peak observation confirmed the quantum size effect on the optical properties. The photoluminescence(PL) emission peaks of the powders at room temperature were consistent with previous reports in the following aspects: 1) PL characteristics are dominated by two peaks of deep-level defect-related emissions at 2.4 - 2.8 eV, 2) the first defect-related peak at 2.4 eV was blue shifted due to the quantum size effect with decreasing the concentration of $Zn(NO_3)_2$(decreasing the size of ZnO q dots). More interestingly, the existence of surface-exposed ZnO q dots affects greatly the second defect PL peak at 2.8 eV.

An Oxalic Acid Sensor Based on Platinum/Carbon Black-Nickel-Reduced Graphene Oxide Nanocomposites Modified Screen-Printed Carbon Electrode

  • Income, Kamolwich;Ratnarathorn, Nalin;Themsirimongkon, Suwaphid;Dungchai, Wijitar
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.416-423
    • /
    • 2019
  • A novel non-enzymatic oxalic acid (OA) sensor based on the platinum/carbon black-nickel-reduced graphene oxide (Pt/CBNi-rGO) nanocomposite is reported. The nanocomposites were prepared by the ethylene glycol reduction method. Their morphology and chemical composition were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and transmission electron microscopy (TEM). The results clearly demonstrated the formation of the Pt/CB-Ni-rGO nanocomposite. The electrocatalytic activity of the Pt/CB-Ni-rGO electrode was investigated by cyclic voltammetry. It was determined that the appropriate amount of Pt enhanced the catalytic activity of Pt for oxalic acid electro-oxidation. Moreover, the modified electrode was determined to be highly selective for oxalic acid without interference from compounds commonly found in urine including uric acid and ascorbic acid. The chronoamperometric signal gave a wide linearity range of 20 μM-60 mM and the detection limit (3σ) was found to be 2.35 μM. The proposed method showed high selectivity, stability, and good reproducibility and could be used with micro-volumes of sample for the detection of oxalic acid. Finally, the oxalic acid content in artificial and control urine samples were successfully determined by our proposed electrode.

Patterning of ITO on Touch Screen Panels using a beam shaped femtosecond laser (빔 쉐이핑된 펨토초 레이저를 이용한 터치스크린 패널의 ITO 박막 패터닝)

  • Kim, Myung-Ju;Kim, Yong-Hyun;Yoon, Ji-Wook;Choi, Won-Seok;Cho, Sung-Hak;Choi, Jiyeon
    • Laser Solutions
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • Femtosecond laser patterning of ITO on a touch screen panel with a shaped fs laser beam was investigated. A quasi flat-top beam was formed using a variable mask and a planoconvex lens. The spatial profile of the original Gaussian beam and the shaped beam were monitored by a CCD beam profiler. The laser patterned ITO film was examined using an optical microscope, Scanning Electron Microscope (SEM) with Energy Dispersive X-ray Spectroscopy (EDS), and Atomic Force Microscope (AFM). It turned out that the quality of the ITO pattern fabricated by a shaped beam is superior to that of the pattern without beam shaping in terms of debris generation, height of the craters, and homogeneity of the bottom. Optimum processing window was determined at the laser irradiance exhibiting 100% removal of Sn. The removal rate of In was measured to be 83%.

  • PDF

Tribological Characteristics of Phosphorated Starch Based Electrorheological Fluid (인산화 전분 ER 유체의 트라이볼로지 특성)

  • Jang, Min-Gyu;Lee, Chul-Hee;Choi, Jea-Young;Sohn, Jung-Woo;Choi, Seung-Bok
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2010
  • This experimental study presents tribological characteristics under boundary lubrication contacts associated with electrorheolocal (ER) fluid. ER fluid is prepared by using phosphorated starch particles and silicone oil. Experimental apparatus of tribological tester is designed and constructed to evaluate tribological characteristics of pin specimens. Wear tests under boundary lubrication of ER fluid are experimentally performed under consideration of several operational factors such as normal load, sliding distance, sliding speed and specimen materials: steel, copper and aluminum. After wear test, microscopic surface changes of the worn pin specimens are analyzed in order to investigate measured wear characteristics by using the scanning electron microscope (SEM) as well as surface profilometer. In addition, the chemical wear characteristics are investigated by using energy dispersive x-ray spectroscopy (EDS). Moreover, friction coefficient measurements under different materials of pin specimens are conducted for the tribological investigations. In order to verify the effect of starch phosphate particles in ER fluid, the wear test results with ER fluid are compared with test results with only silicone oil. The results clearly present that the phosphorated starch based ER fluid shows the stabilized wear as well as friction characteristics after run-in operations, but the wear rate under ER fluid is increased.

Stabilization of As in Soil Contaminated with Chromated Copper Arsenate (CCA) Using Calcinated Oyster Shells (목재방부제(CCA) 오염토양의 소성가공 굴껍질을 이용한 비소 안정화)

  • Moon, Deok-Hyun;Cheong, Kyung-Hoon;Kim, Tae-Sung;Khim, Jee-Hyeong;Choi, Su-Bin;Moon, Ok-Ran;Ok, Yong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.4
    • /
    • pp.378-385
    • /
    • 2009
  • Arsenic (As) is known to be very toxic and carcinogenic to human beings. Arsenic contaminated soil was collected from a timber mill site at Busan Metropolitan City, Korea, where chromated copper arsenate (CCA) had been used to protect wood from rotting caused by insects and microbial agents. The soil was stabilized using both natural oyster shells (NOS) and calcinated oyster shells (POS). The calcination of natural oyster shells was accomplished at a high temperature in order to activate quicklime from calcite. Two different oyster shell particle sizes (-#10 mesh and -#20 mesh) and curing periods of up to 28 days were investigated. The stabilization effectiveness was evaluated based on the Korean Standard Test (KST) method (1N HCl extraction). The stabilization results showed that the POS treatment was more effective than the NOS treatment at immobilizing the As in the contaminated soils. A significant As reduction (96%) was attained upon a POS treatment at 20 wt% and passed the Korean warning standard of 20 mg/kg ('Na' area). However, an As reduction of only 47% (169 mg/kg) was achieved upon a NOS treatment at 20 wt%. The -#20 mesh oyster shells seem to perform better than the -#10 materials. The scanning electron microscopy (SEM)-energy dispersive X-ray spectroscopy (EDX) results showed that As immobilization was strongly associated with Ca and O in the presence of Al and Si.

Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S) (황화수소(H2S) 감지를 위한 아세트산 납이 침염된 폴리에스터(PET) 섬유 기반의 변색성 센서)

  • Lee, Junyeop;Do, Nam Gon;Jeong, Dong Hyuk;Jung, Dong Geon;An, Hee Kyung;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.360-364
    • /
    • 2020
  • In this study, the colorimetric sensor, polyester (PET) fabric dyed with lead (II) acetate (Pb(C2H3O2)2), was fabricated and characterized for the detection of the hydrogen sulfide (H2S). The surface morphology of the fabric was determined using scanning electron microscope and energy-dispersive X-ray spectroscopy. The optical properties of the fabric were evaluated by measuring the variation in the blue value of an RGB sensor. The fabric showed a significant color change, high linearity (R2 : 0.98256), and fast response time (< 1.0 s) when exposed to H2S. This is because the sensor is highly porous and permeable to the gas. The fabric can not only be used as a hydrogen sulfide sensor but also be used to detect and prevent H2S influx using sticky tape on pipelines.

Synthesis and Characterization of CrZr-O-N Films Using Cr-Zr Segment Targets by Unbalanced Magnetron Sputtering

  • Kim, Dong Jun;La, Joung Hyun;Ki, Sung Min;Lee, Sang Yul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.94-94
    • /
    • 2013
  • The Cr-Zr-N films have much improved mechanical properties and very smooth surface roughness. However, in spite of their outstanding properties, the Cr-Zr-N coatings revealed their mechanical properties deteriorated severely with increasing Zr content at $500^{\circ}C$ ecause of very rapid oxidation. Recently oxynitride films have been widely studied due to their excellent unique mechanical properties and oxidation resistance. In this work, CrZr-O-N films with various O contents were synthesized by unbalanced magnetron sputtering with Cr-Zr segment targets (Cr:Zr volume ratios is 1:1) and all films were prepared in a nitrogen rich mixture of N2 and O2. Characteristics such as crystalline structure, hardness and chemical composition as a function of the O content were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM), microhardness testing system and energy dispersive spectroscopy (EDS). Results showed that the thin films had dense and compact microstructure as O content in the films increases. The microstructure of the thin films consisted of mainly crystalline Cr (Zr)N phase and Cr2O3 phase. The maximum hardness and elastic modulus of the films was measured to be approximately 33.2 GPa and 280.6 GPa from the films with low content of O elements. Detailed experimental results will be presented.

  • PDF

Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil

  • Long, Dongyan;Tang, Xianjin;Cai, Kuan;Chen, Guangcun;Shen, Chaofeng;Shi, Jiyan;Chen, Linggui;Chen, Yingxu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1123-1132
    • /
    • 2013
  • The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.

A Study on the Provenance of an Opacifying Agent(PbSnO3) in Yellow and Green Glass Beads Excavated from the Korean Peninsula

  • Yu, Heisun;Ro, Jihyun
    • Journal of Conservation Science
    • /
    • v.34 no.4
    • /
    • pp.305-311
    • /
    • 2018
  • The yellow crystalline material present in yellow and green glass beads excavated from sites in the Baekje region of Korea was previously analyzed through scanning electron microscopy with energy dispersive spectroscopy and X-ray diffraction, revealing that the yellow crystalline material was $PbSnO_3$. This material is a pigment that is rarely seen in the Korean peninsula. Furthermore, some studies have been published on the provenance of lead in this material, which revealed no relationship to Korea, China, or Japan. In this study, we collected all accessible results of analyses on the lead isotope ratio of yellow and green glass beads excavated from the Korean peninsula, specifically from 7 sites in the Baekje region(located in the vicinity of Seoul, Wanju, Hwaseong, Osan, Gongju, Buyeo, and Iksan) and 2 sites in the Silla region(located in the vicinity of Gyeongju and Changnyeong). We subsequently investigated the lead provenance of the opacifying agents in the glass beads through comparison with the current extent of the galena data accumulated for the East Asian region, including Korea, China, and Japan, and for Thailand(Kanchanaburi Province), Southeast Asia. Our analysis determined that the lead provenance of the glass beads excavated from the Korean peninsula was Thailand(Kanchanaburi Province). Beyond our results, further studies should seek to determine the production sites of the glass beads. Obtaining and comparing the scientific analyses of glass beads from India and Southeast Asia would enable research on the glass beads trade through the maritime silk road.

Study on Applying Techniques of Wooden Lacquerware Artifacts Excavated from Imdang-dong Site, Gyeongsan, Korea (경산 임당 유적 출토 칠기유물의 칠기법 연구)

  • Lee, Kwang-Hee;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.33 no.2
    • /
    • pp.61-73
    • /
    • 2017
  • In order to identify the application techniques of wooden lacquerware artifacts, optical/polarized light microscopy, Fourier transform infrared (FT-IR) spectroscopy, and scanning electron microscopy (SEM) equipped with energy dispersive X-ray analysis (EDX) were conducted on the lacquer films of 61 wooden lacquerware artifacts excavated from the Imdang-dong site, Gyeongsan, Korea. Powdered soil, soot, and charcoal were used as a filler for the undercoat, and iron oxide ($Fe_2O_3$) was used as a red pigment. Five different applying techniques were identified for the undercoat according to the composition of the lacquer. Eight different application techniques were identified for the final coat (on the middle layer and surface layer). Totally seventeen application techniques were identified based on the combination methods of the undercoat and finalcoat. Consequently, the undercoating techniques of Imdang-dong lacquerwares were found to be similar to those of lacquerwares from excavated in other provinces. However, the use of iron oxide as a red pigment at Gyeongsang province is very characteristic compared with others.