• Title/Summary/Keyword: energy dispersive X-ray spectroscopy

Search Result 639, Processing Time 0.03 seconds

PCDS: 반도체 및 디스플레이 공정 시 실시간 입자 분석 및 모니터링 방법

  • Kim, Deuk-Hyeon;Kim, Yong-Ju;Gang, Sang-U;Kim, Tae-Seong;Lee, Jun-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.70.2-70.2
    • /
    • 2015
  • 현재 반도체 및 디스플레이이 공정 분야는 1 um 이상의 입자에서부터 10 nm이하 크기의 오염입자를 제어해야 한다. 현재 오염원인을 파악하기 위해서 사용하는 방법은 공정 완료 후 대상물(웨이퍼 및 글래스)을 CD-SEM (Critical Dimension Scanning Electron Microscope)와 같은 첨단 분석장비를 사용하여 사후 (Ex-situ) 진행하고 있다. 이러한 방법은 오염원이 이미 공정 대상물을 오염시키고 난 후 그 원인을 분석하는 방법으로 그 원인을 찾기가 어려울 뿐만 아니라, 최근 공정관리가 공정 진행 중(In-situ) 행해져야 하는 추세로 봤을 때 합당한 방법이라 할 수 없다. 이를 해결하기 위해 진공공정 중 레이저를 이용하여 측정하고자 하는 여러 시도들이 있었지만, 여전히 긍정적인 답변을 보여주지 못하고 있다. 본 발표에서 소개하는 PCDS (Particle Characteristic Diagonosis System)은 PBMS (Particle Beam Mass Spectrometer)와 SEM (Scanning Electron Microscope), 그리고 EDS (Energy Dispersive X-ray Spectroscopy)를 통합하여 만든 시스템으로 진공공정 중 (In-situ) 챔버 내부에서 발생하고 있는 입자의 크기 분포, 입자의 형상, 그리고 입자의 성분을 실시간으로 분석할 수 있는 방법을 제공한다. 이러한 방법 (PCDS)에 대한 개념과 원리, 그리고 현재까지 개발된 단계에서 얻어진 결과에 대해 소개할 것이다.

  • PDF

Generation of Silver Nanoparticles by Spark Discharge Aerosol Generator Using Air as a Carrier Gas (공기 분위기에서 스파크 방전을 이용한 은 나노입자 생성)

  • Oh, Hyun-Cheol;Jung, Jae-Hee;Park, Hyung-Ho;Ji, Jun-Ho;Kim, Sang-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.2 s.245
    • /
    • pp.170-176
    • /
    • 2006
  • A spark discharge aerosol generator using air as a carrier gas has successfully been applied to silver nanoparticle production. The spark discharge between two silver electrodes, which was periodically obtained by discharging the capacitor, produced sufficient high temperatures to evaporate a small fraction of the silver electrodes. The silver vapor was subsequently supersaturated by rapid cooling and condensed to silver nanoparticles by nucleation and condensation. The morphology of the generated particles observed by transmission electron microscope was spherical. The element composition of the nanoparticles was silver, which was determined by energy dispersive X-ray spectroscopy. The crystal phase of the particles spark-generated under air atmosphere was composed of silver and silver oxides phase, which was determined by Xray diffraction analysis. While the nanoparticles generated under nitrogen atmosphere had only silver phase. This XRD data indicates that some fraction of the evaporated silver vapor could be oxidized in air atmosphere by the reaction with oxygen. A stable operation of the spark discharge generator has been achieved. The size and concentration of the particles can be easily controlled by altering the repetition frequency, capacitance, gap distance and flow rate of the spark discharge system.

The Effect of the Te on the Microstructure of Rapidly Solidification Ag-Sn-In Contact Material (급속응고한 Ag-Sn-In계 접점재료의 미세조직에 미치는 Te 의 영향)

  • Chang, Dae-Jung;Kwon, Gi-Bong;Kim, Young-Ju;Cho, Dae-Hyoung;Nam, Tae-Woon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.86-91
    • /
    • 2007
  • Contact material is widely used as electrical parts. Ag-CdO has a good wear resistance and stable contact resistance. But the disadvantages of Ag-Cd alloy are coarse Cd oxides and harmful metal, Cd. Then Ag-Sn alloy that has stable and fine Sn oxide at high temperature has been developed. In order to investigate the effect of Te additional that affects the formation of the oxide layer on the surface and the formation of oxide in matrix Ag, we studied the microstructures and properties of Ag-Sn-In(-Te) material fabricated by rapid solidification process. The experimental procedure were melting using high frequency induction, melt spinning, and internal oxidation. Specimens were examined and analyzed by Transmission electron microscopy(TEM), energy dispersive X-ray spectroscopy(EDS) and Vickers hardness. As a result, internal oxidation was completed even at $600^{\circ}C$. Te forms coarse $In_{2}TeO_{6}$ phase and makes fine and well dispersed $SnO_{2}$ Phase. 0.3 wt% Te shows favorable properties.

A Study on the Characterization of Ni-C Thin Films Utilizing a Dual-Source Deposition System (듀얼 소스 증착장치를 이용한 Ni-C 박막의 특성에 관한 연구)

  • Han, Chang-Suk;Chun, Chang-Hwan;Han, Seung-Oh
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.5
    • /
    • pp.235-243
    • /
    • 2008
  • Ni-C composite films were prepared using a combination of microwave plasma CVD and ion beam sputtering deposition working in a codeposition way. The structure of these films was characterized by energy-dispersive X-ray diffraction (EDXRD), transmission electron microscopy (TEM) and Raman spectroscopy. It was found that a nickel carbide phase, $Ni_3C$ (hcp), formed as very fine crystallites over a wide temperature range when Ni-C films were deposited at low $CH_4$ flow rates. The thermal stability of this nonequilibrium carbide $Ni_3C$ was also studied. As a result, the $Ni_3C$ carbide was found to decompose into nickel and graphite at around $400^{\circ}C$. With high $CH_4$ flow rates (> 0.2 sccm), the structure of the Ni-C films became amorphous. The formation behavior of the carbide and amorphous Ni-C phases are discussed in relation to the electrical resistivity of the films.

Stucture and Intergranular Segregation of WC/WC Grain Boundaries in WC-Based Cemented Carbides (WC기 초경합금중 WC/WC界面의 구조와 입계편석)

  • Sin, Sun-Gi
    • Korean Journal of Materials Research
    • /
    • v.10 no.9
    • /
    • pp.612-618
    • /
    • 2000
  • The WC/WC grain boundary structure and intergranular segregation in WC-Co and WC-VC-Co cemented carbides were investigated by high-resolution transmission electron microscopy and energy dispersive X-ray spectroscopy in order to elucidate whether contiguous boundaries were present or not at the atomic level. Some grain boundaries were separated by liquid phase, while others were contiguous at the atomic level. Cobalt was found to be segregated to WC/WC grain boundaries in WC-Co. Cobalt and vanadium were co-segregated to grain boundaries in WC-VC-Co. The segregation width in both materials was about 6 nm. These results suggest that the vanadium present in contiguous boundaries acts as an effective barrier to the migration of boundaries during sintering and annealing. This could explain the grain growth inhibiting mechanism of VC added to WC-Co.

  • PDF

Use of Stone Powder Sludge in Fly Ash-Based Geopolymer

  • Choi, Se-Jin
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2010
  • Stone powder sludge is a by-product of the manufacturing process of crushed sand. Most of it is dumped with soil in landfills, and the disposal of stone powder sludge causes a major environmental problem. This paper investigates the applicability of stone powder sludge in fly ashbased geopolymer. For this, stone powder sludge was used to replace fly ash at a replacement ratio of 50% and 100% by weight. The compressive strength of the samples was measured and scanning electron microscopy/ energy dispersive spectroscopy (SEM/EDS) analysis and X-ray diffraction (XRD) were performed. The test results indicated that the optimum level of the alkali activator ratio ($Na_2SiO_3$/NaOH) for fly ash-based geopolymer using stone powder sludge was 1.5. The strength development is closely related to the NaOH solution concentration. In addition, the compressive strength of the sample cured at $25^{\circ}C$ was significantly improved between 7 days and 28 days, even though the strength of the sample showed the lowest value at 7 days. Microscopy results indicated that a higher proportion of unreacted fly ash spheres remained in the sample with 5M NaOH, and some pores on the surface of the sample were observed.

Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts (용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

Biophysical properties of PPF/HA nanocomposites reinforced with natural bone powder

  • Kamel, Nagwa A.;Mansour, Samia H.;Abd-El-Messieh, Salwa L.;Khalil, Wafaa A.;Abd-El Nour, Kamal N.
    • Advances in materials Research
    • /
    • v.4 no.3
    • /
    • pp.145-164
    • /
    • 2015
  • Biodegredable and injectable nanocomposites based on polypropylene fumarate (PPF) as unsaturated polyester were prepared. The investigated polyester was crosslinked with three different monomers namely N-vinyl pyrrolidone (NVP), methyl methacrylate (MMA) and a mixture of NVP and MMA (1:1 weight ratio) and was filled with 45 wt% of hydroxyapatite (HA) incorporated with different concentrations of chemically treated natural bone powder (NBP) (5, 10 and 15 wt%) in order to be used in treatment of orthopedics bone diseases and fractures. The nanocomposites immersed in the simulated body fluid (SBF) for 30 days, after the period of immersion in-vitro bioactivity of the nanocomposites was studied through Fourier transform infrared (FTIR), scanning electron microscope (SEM), energy dispersive X-ray (EDX) in addition to dielectric measurements. The degradation time of immersed samples and the change in the pH of the SBF were studied during the period of immersion.

Preparation and characterization of PVDF/TiO2 composite ultrafiltration membranes using mixed solvents

  • Tavakolmoghadam, Maryam;Mohammadi, Toraj;Hemmati, Mahmood
    • Membrane and Water Treatment
    • /
    • v.7 no.5
    • /
    • pp.377-401
    • /
    • 2016
  • To study the effect of titanium dioxide ($TiO_2$) nanoparticles on membrane performance and structure and to explore possible improvement of using mixed solvents in the casting solution, composite polyvinylidene fluoride (PVDF) ultrafiltration membranes were prepared via immersion precipitation method using a mixture of two solvents triethyl phosphate (TEP) and dimethylacetamide (DMAc) and addition of $TiO_2$ nanoparticles. Properties of the neat and composite membranes were characterized using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), Atomic force microscopy (AFM) and contact angle and membrane porosity measurements. The neat and composite membranes were further investigated in terms of BSA rejection and flux decline in cross flow filtration experiments. Following hydrophilicity improvement of the PVDF membrane by addition of 0.25 wt.% $TiO_2$, (from $70.53^{\circ}$ to $60.5^{\circ}$) degree of flux decline due to irreversible fouling resistance of the composite membrane reduced significantly and the flux recovery ratio (FRR) of 96.85% was obtained. The results showed that using mixed solvents (DMAc/TEP) with lower content of $TiO_2$ nanoparticles (0.25 wt.%) affected the sedimentation rate of nanoparticles and consequently the distribution of nanoparticles in the casting solution and membrane formation which influenced the properties of the ultimate composite membranes.

Microstructure Evolution of Semi Solid AZ31+(Ca) Magnesium Alloys during Reheating Process (Ca첨가 반응고 AZ31 마그네슘 합금의 재가열에 따른 미세조직 변화)

  • Kim, Hee-Kyung;Seong, Bong-Hak;Van, Guen-Ho;Kim, Dae-Hwan;Seong, Yeong-Rok;Lim, Su-Gun
    • Journal of Korea Foundry Society
    • /
    • v.32 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • In this study, we are aimed to prevent grain growth of semi-solid AZ31 magnesium alloys during reheating process. The semi-solid AZ31+(Ca) billets were investigated by using metallographic analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy in order to elucidate the effect of Ca addition during reheating process. The grain growth of semi-solid AZ31+(Ca) billet was reduced with increasing Ca content during reheating. The grain size of AZ31+(Ca) billet decreased with increasing volume fraction of Al2Ca particles. The grain growth rate constant K calculated by Oswald ripening LSW theory in AZ31+1.5wt.% Ca billet was the lowest 129.