• Title/Summary/Keyword: energy demand

Search Result 2,435, Processing Time 0.025 seconds

A Study on the Application of the Price Prediction of Construction Materials through the Improvement of Data Refactor Techniques (Data Refactor 기법의 개선을 통한 건설원자재 가격 예측 적용성 연구)

  • Lee, Woo-Yang;Lee, Dong-Eun;Kim, Byung-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.6
    • /
    • pp.66-73
    • /
    • 2023
  • The construction industry suffers losses due to failures in demand forecasting due to price fluctuations in construction raw materials, increased user costs due to project cost changes, and lack of forecasting system. Accordingly, it is necessary to improve the accuracy of construction raw material price forecasting. This study aims to predict the price of construction raw materials and verify applicability through the improvement of the Data Refactor technique. In order to improve the accuracy of price prediction of construction raw materials, the existing data refactor classification of low and high frequency and ARIMAX utilization method was improved to frequency-oriented and ARIMA method utilization, so that short-term (3 months in the future) six items such as construction raw materials lumber and cement were improved. ), mid-term (6 months in the future), and long-term (12 months in the future) price forecasts. As a result of the analysis, the predicted value based on the improved Data Refactor technique reduced the error and expanded the variability. Therefore, it is expected that the budget can be managed effectively by predicting the price of construction raw materials more accurately through the Data Refactor technique proposed in this study.

Evaluation of Bonding Performance of Hybrid Materials According to Laser and Plasma Surface Treatment (레이저 및 플라즈마 표면처리에 따른 이종소재 접합특성평가)

  • Minha Shin;Eun Sung Kim;Seong-Jong Kim
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.441-447
    • /
    • 2023
  • Recently, as demand for high-strength, lightweight materials has increased, there has been great interest in joining with metals. In the case of mechanical bonding, such as bolting and riveting, chemical bonding using adhesives is attracting attention as stress concentration, cracks, and peeling occur. In this paper, surface treatment was performed to improve the adhesive strength, and the change in adhesive strength was analyzed. For the adhesive strength test were conducted with Carbon Fiber Reinforced Plastic(CFRP), CR340(Steel), and Al6061(Aluminum), and laser and plasma surface treatment were used. After plasma surface treatment, the adhesive strength improved by 7.3% and 39.2% in CFRP-CR340 and CFRP-Al6061, respectively. CR340-Al6061 was improved by 56.2% in laser surface treatment. Surface free energy(SFE) was measured by contact angle after plasma treatment, and it is thought that the adhesion strength was improved by minimizing damage through a chemical reaction mechanism. For laser surface treatment, it is thought that creates a rough bonding surface and improves adhesive strength due to the mechanical interlocking effect. Therefore, surface treatment is effect to improve adhesive strength, and based on this paper, the long-term fatigue test will be conducted to prevent fatigue failure, which is a representative cause of actual structural damage.

A Study on the Prior Leaching and Recovery of Lithium from the Spent LiFePO4 Cathode Powder Using Strong Organic Acid (강유기산을 이용한 폐LiFePO4 양극분말로부터 리튬의 선침출에 대한 연구)

  • Dae-Weon Kim;Soo-Hyun Ban;Hee-Seon Kim;Jun-Mo Ahn
    • Clean Technology
    • /
    • v.30 no.2
    • /
    • pp.105-112
    • /
    • 2024
  • Globally, the demand for electric vehicles has surged due to greenhouse gas regulations related to climate change, leading to an increase in the production of used batteries as a consequence of the battery life issue. This study aims to selectively leach and recover valuable metal lithium from the cathode material of spent LFP (LiFePO4) batteries among lithium-ion batteries. Generally, the use of inorganic acids results in the emission of toxic gases or the generation of large quantities of wastewater, causing environmental issues. To address this, research is being conducted to leach lithium using organic acids and other leaching agents. In this study, selective leaching was performed using the organic acid methane sulfonic acid (MSA, CH3SO3H). Experiments were conducted to determine the optimal conditions for selectively leaching lithium by varying the MSA concentration, pulp density, and hydrogen peroxide dosage. The results of this study showed that lithium was leached at approximately 100%, while iron and phosphorus components were leached at about 1%, verifying the leaching efficiency and the leaching rates of the main components under different variables.

A Framework Development for Sketched Data-Driven Building Information Model Creation to Support Efficient Space Configuration and Building Performance Analysis (효율적 공간 형상화 및 건물성능분석을 위한 스케치 정보 기반 BIM 모델 자동생성 프레임워크 개발)

  • Kong, ByungChan;Jeong, WoonSeong
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.1
    • /
    • pp.50-61
    • /
    • 2024
  • The market for compact houses is growing due to the demand for floor plans prioritizing user needs. However, clients often have difficulty communicating their spatial requirements to professionals including architects because they lack the means to provide evidence, such as spatial configurations or cost estimates. This research aims to create a framework that can translate sketched data-driven spatial requirements into 3D building components in BIM models to facilitate spatial understanding and provide building performance analysis to aid in budgeting in the early design phase. The research process includes developing a process model, implementing, and validating the framework. The process model describes the data flow within the framework and identifies the required functionality. Implementation involves creating systems and user interfaces to integrate various systems. The validation verifies that the framework can automatically convert sketched space requirements into walls, floors, and roofs in a BIM model. The framework can also automatically calculate material and energy costs based on the BIM model. The developed frame enables clients to efficiently create 3D building components based on the sketched data and facilitates users to understand the space and analyze the building performance through the created BIM models.

Sensitivity Analysis Study of Geotechnical Factors for Gas Explosion Vibration in Shallow-depth Underground Hydrogen Storage Facility (저심도 지하 수소저장소에서의 가스 폭발 진동에 대한 지반공학적 인자들의 민감도 분석 연구)

  • Go, Gyu-Hyun;Woo, Hyeon‑Jae;Cao, Van-Hoa;Kim, Hee-Won;Kim, YoungSeok;Choi, Hyun-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.4
    • /
    • pp.169-178
    • /
    • 2024
  • While stable mid- to large-scale underground hydrogen storage infrastructures are needed to meet the rapidly increasing demand for hydrogen energy, evaluating the safety of explosion vibrations in adjacent buildings is becoming important because of gas explosions in underground hydrogen storage facilities. In this study, a numerical analysis of vibration safety effects on nearby building structures was performed assuming a hydrogen gas explosion disaster scenario in a low-depth underground hydrogen storage facility. A parametric study using a meta-model was conducted to predict changes in ground dynamic behavior for each combination of ground properties and to analyze sensitivity to geotechnical influencing factors. Directly above the hydrogen storage facility, the unit weight of the ground had the greatest influence on the change in ground vibration due to the explosion, whereas, farther away from the facility, the sensitivity of dynamic properties was found to be high. In addition, in evaluating the vibration stability of ground building structures based on the predicted ground vibration data and blasting vibration tolerance criteria, in the case of large reinforced concrete building structures, the ground vibration safety was guaranteed with a separation distance of about 10-30 m.

A Study on the Countmeasures of the Korean Pharmaceutical/Bio Industry to the EU Corporate Sustainability Due Diligence Directive, by using Text Mining (텍스트 마이닝을 활용한 국내 제약·바이오 업종의 EU 공급망 실사법 대응 방안 연구)

  • Sori Kim;Joonhak Ki
    • Information Systems Review
    • /
    • v.26 no.1
    • /
    • pp.93-117
    • /
    • 2024
  • In February 2022, the EU announced a draft of the EU Corporate Sustainability Due Diligence Directive requiring due diligence and disclosure of information on environmental and human rights risks in corporate supply chains. This study evaluated the ability of 13 Korean pharmaceutical/bio companies to respond to the EU's demand for due diligence in the supply chain and compared it to 13 globally leading pharmaceutical/bio companies which are considered good in environmental and human rights risk management. For comparative analysis, text mining analysis was performed using R. Basic word frequency and concurrent words were analyzed and topic modeling was performed by applying Latent Dirichlet Allocation. As a result of the analysis, it was found that compared to advanced companies, domestic pharmaceutical and bio companies lack negative issue reporting and identification systems and supply chain due diligence implementation processes, and require advancement of data management for environmental and human rights information disclosure. Accordingly, domestic pharmaceutical and bio companies need to prepare differentiated support measures to systematically identify and reduce risks in the supply chain of small and medium-sized businesses beyond simply providing financial support. It is also desirable for the government to provide policy support by mandating Korea's own supply chain environment and human rights due diligence system, along with support for strengthening the ability to respond to due diligence of domestic pharmaceutical and bio companies, such as expert consulting and financial support.

Synthesis of Core@Shell-Structured Silicon@Carbon Nanoparticles by One-Pot Spray Pyrolysis Process and Application as Anode Materials for Lithium-Ion Batteries (단일 분무 열분해 공정을 이용한 코어@쉘 구조의 Si@C 나노 분말 합성 및 리튬 이온 전지 음극소재 적용)

  • Seong Ho Jung;Jae Seob Lee;Jung Sang Cho
    • Clean Technology
    • /
    • v.30 no.3
    • /
    • pp.220-227
    • /
    • 2024
  • As the demand for lithium-ion batteries with high capacity and high energy density has rapidly increased, silicon anodes (theoretical capacity = 3,570 mA h g-1) have garnered attention as potential replacements for conventional graphite anodes (theoretical capacity = 372 mA h g-1). However, silicon anodes suffer from severe volume expansion (~360%) during lithiation, low ionic conductivity (10-14 ~ 10-13 cm2 S-1), and low electrical conductivity (10-2 S cm-1), resulting in poor cycling and rate performance. To address these issues, this study synthesized core@shell-structured silicon@carbon nanoparticles (Si@C NPs) via a one-pot spray pyrolysis process using Pluronic-F127. Pluronic-F127 in the spray solution contributes to the synthesis of nanoparticles by preventing the formation of silicon nanoparticle/dextrin agglomerates and by undergoing pyrolysis simultaneously. Additionally, dextrin derived amorphous carbon was coated on the surface of the silicon nanoparticles to act as an electron transport pathway within the anodes and enhance the electrical contact between the silicon nanoparticles. The Si@C NPs exhibited a discharge capacity of 1,912 mA h g-1 after 50 cycles at 1.0 A g-1 and high rate capabilities (discharge capacity of 1,493 mA h g-1 at 3.0 Ag-1). The silicon@carbon composite nanoparticle synthesis strategy based on the spray pyrolysis process presented in this study is expected to offer a new direction for improving the performance of silicon anode materials.

The Policy Review and Water Quality Characteristics of National Fishing Harbors and Designated Ports in East Coast of Korea (동해안 국가어항과 지정항만의 수질특성 및 정책적 고찰)

  • Lee, Dae-In;Kim, Gui-Young;Moon, Ju-Hoon;Eom, Ki-Hyuk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.4
    • /
    • pp.213-223
    • /
    • 2011
  • The status and changes of water quality of national fishing harbors and designated ports in East Coast of Korea were analyzed to support establishment effective water environmental management. COD (Chemical Oxygen Demand) concentration was satisfied to designated water quality criteria in most areas, but TN (Total Nitrogen) and TP (Total Phosphorus) exceeded the criteria frequently. Also, peak concentration was summer in COD and SS (Suspended Solid), but winter in TP. Eutrophication index of Ganggu and Pohang (old) area were the highest. Pollution index by function of COD, TN, and TP of Ganggu, Pohang, Jumunjin, and Guryongpo was high with gradual increasing recently, on the contrary, that of Samcheok, Imwon, and Chuksan was decreased. Pollution index involving multi-indictors relation to organics and inorganics was necessary for water quality assessment. Designated water quality criteria needed to be improved because the criteria of Jukbyun and Chuksan was applied more strictly compared to the other regions although without difference of environmental characteristics. Furthermore, the criteria notified lately needed to be related to management pollutants from land-based sources. The continuous diagnosis and monitoring on sediment quality within the study area were necessary for prevention of water pollution and eco-friendly disposal of dredged sediment. Especially, monitoring of Designated Ports was implemented partially, however monitoring ratio of National Fishing Har-bors was 7% to whole part. Therefore, systematic and integrated environmental monitoring for ports and harbors with charge of national management was reestablished by strengthening and securing a legal basis.

The Effects of amino acid balance on heat production and nitrogen utilization in broiler chickens : measurement and modeling

  • Kim, Jj-Hyuk;MacLeod, Murdo G.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2004.11a
    • /
    • pp.80-90
    • /
    • 2004
  • Three experiments were performed to test the assumption that imbalanced dietary amino acid mixtures must lead to increased heat production (HP). The first experiment was based on diets formulated to have a wide range of crude protein (CP) concentrations but a fixed concentration of lysine, formulated to be the first-limiting amino acid. In the second (converse) experiment, lysine concentration was varied over a wide range while CP content was kept constant. To prevent the masking of dietary effects by thermoregulatory demands, the third experiment was performed at 30 $^{\circ}C$ with the diets similar to the diets used in the second experiment. The detailed relationships among amino acid balance, nitrogen (N) metabolism and energy (E) metabolism were investigated in a computer-controlled chamber calorimetry system. The results of experiments were compared with the predictions of a computerised simulation model of E metabolism. In experiment 1. with constant lysine and varying CP, there was a 75 % increase in N intake as CP concentration increased. This led to a 150 % increase in N excretion. with no significant change in HP. Simulated HP agreed with the empirically determined results in not showing a trend with dietary CP. In experiment 2, with varying lysine but constant CP, there was a 3-fold difference in daily weight gain between the lowest and highest lysine diets. HP per bird increased significantly with dietary lysine concentration. There was still an effect when HP was adjusted for body weight differences, but it failed to maintain statistical significance. Simulated HP results agreed in showing little effect of varying lysine concentration and growth rate on HP. Based on the results of these two experiments, the third experiment was designed to test the response of birds to dietary lysine in high ambient temperature. In experiment 3 which performed at high ambient temperature (30 $^{\circ}C$), HP per bird increased significantly with dietary lysine content, whether or not adjusted for body-weight. The trend was greater than in the previous experiment (20 $^{\circ}C$).

  • PDF

Spatial Distributions and Monthly Variations of Water Quality in Coastal Seawater of Tongyeong, Korea (통영 주변 해역 수질의 공간분포 및 월 변화 특성)

  • Lee, Young-Sik;Lim, Weol-Ae;Jung, Chang-Su;Park, Jong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.3
    • /
    • pp.154-162
    • /
    • 2011
  • Seawater quality was investigated each month at 30 stations near Tongyeong, South Korea, to provide data for the effective use of coastal fisheries and the reduction of economic damage to marine products. Water temperature was lowest in January and highest at the end of August. Neither extremely low water temperature below $4^{\circ}C$ nor fish damage caused by low water temperature was observed. Salinity ranged from 24.04 to 34.39 psu in the surface layer and from 29.92 to 34.39 psu in the bottom layer. The minimum salinity, attributable to rainfall events, was observed in July; salinity increased to high of about 34 psu in November. Low dissolved oxygen (DO), below 4 mg/L, was observed at Wenmun and Buksin Bays during May to October. Concentrations of $NO_2$-N, $NO_3$-N, and $PO_4$-P were low from March to September and high from October to February. Transparency was 6 m on average and was high in Wenmun Bay. Chemical oxygen demand (COD) and chlorophyll a (Chl. a) were high during summer, when the water temperature was high. With cluster analysis based on environment factors related to water quality, the study area could be divided into three main sea areas: Buksin Bay, coastal seawater, and offshore seawater. Buksin Bay was characterized by low salinity, high DO and Chl. a, and high transparency in the surface layer and by low DO and high $NH_4$-N in the bottom layer. Offshore seawater had high salinity and $NO_3$-N and low Chl. a concentration. In summer season that oyster need lots of phytoplankton, $NO_3$-N and Chl. a concentrations at this study area were low compare to Gwangy-ang and Gamak Bays. In winter, a sea squirt swallow much more than other season, the Chl. a concentrations were also low than Gwangyang and Gamak Bays.