• Title/Summary/Keyword: energy degrader

Search Result 8, Processing Time 0.035 seconds

Design of proton-beam degrader for high-purity 89Zr production

  • Hyunjin Lee;Sangbong Lee;Daeseong Choi;Gyoseong Jeong;Hee Seo
    • Nuclear Engineering and Technology
    • /
    • v.56 no.7
    • /
    • pp.2683-2689
    • /
    • 2024
  • This work investigated the most suitable type of degrader (Cu, Al or Nb) and its thickness, taking into consideration the salient aspects of concrete activation for high-purity 89Zr production by 89Y(p,n)89Zr nuclear reaction. The MCNP and FISPACT codes were used to determine the optimal degrader thickness and the radioactivity of shielding concrete by neutron activation, respectively. The results showed that the optimal thickness of the beam degraders was 1.16, 3.19, and 1.33 mm for Cu, Al, and Nb, respectively. The neutron production rate per proton and the energy and angular distributions of neutrons varied depending on the type of degrader. Considering the radioactivity of the target-room concrete and the amount of radioactive waste expected to be generated, the use of a 1.33-mm-thick Nb degrader for 89Zr production was determined to be the best choice.

Application of C-11 Gas Target Using Finite Element Method (FEM을 이용한 C-11 기체표적의 성능평가)

  • Hur M.G.;Oh H.S.;Jung H.Y.;Park S.P.;Yang S.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1699-1704
    • /
    • 2005
  • In this research the energy degrader, which is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the Nastran mediocrity finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined, and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

  • PDF

The Evaluation of Performance of C-11 Radio Isotope Gas Target using Finite Element Method (FEM을 이용한 C-11 동위원소 기체표적의 성능평가)

  • Oh, Hwan-Sup;Hur, Min-Goo;Park, Sang-Pil;Jung, Hyo-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.24-31
    • /
    • 2006
  • The energy degrader is the most fragile part of the security of a target, has been newly designed to improve the performance of the gas target. Also, the numerical analysis of the heat movement and mechanical movement during the operation of the target has been accomplished. The heat analysis and structure analysis which are using the cooling water flow and pressure in the energy degrader and the finite element analysis program, has been considered with the heat movement and mechanical movement according to the current capacity of proton beam which determines the production yield of the radioactive isotope. Also the possible use range has been determined and at the same time the most suitable running condition according to the current capacity of proton beam has been suggested.

Oprimization Study for the CRC PIXE System Beam Transport Line

  • Jeong, Cheol-Ki;Lee, Goung-Jin
    • Journal of Radiation Industry
    • /
    • v.8 no.1
    • /
    • pp.59-63
    • /
    • 2014
  • Proton Induced X-ray Emission (PIXE) is a MeV ion beam analysis method for use with particle accelerators. PIXE uses low-energy charged particles as an excitation mechanism to generate characteristic x-ray emission from each element in a target. In PIXE analysis, the beam current used is from a few nA to several tens of nA. Chosun University (Cyclotron Research Center) designed a $50{\mu}A$ beam line from the 13 MeV cyclotron for use with a PIXE analysis system, as well as performing beam transport line optimization research. In this study, the beam line operation conditions for the optimization process of beam transport and beam characteristics are shown.

A Study of Radiation Exposure in Proton Therapy Facility (양성자치료기 가속기 시설에서의 작업종사자의 방사선 피폭 연구)

  • Lee, Sang-Hoon;Shin, Dong-Ho;Yoon, Myong-Geun;Shin, Jung-Wook;Rah, Jeong-Eun;Kwak, Jung-Won;Park, Sung-Yong;Shin, Kyung-Hwan;Lee, Doo-Hyun;Ahn, Sung-Hwan;Kim, Dae-Yong;Cho, Kwan-Ho;Lee, Se-Byeong
    • Progress in Medical Physics
    • /
    • v.20 no.1
    • /
    • pp.37-42
    • /
    • 2009
  • Proton therapy facility, which is recently installed at National Cancer Center in Korea, generally produces a large amount of radiation near cyclotron due to the secondary particles and radioisotopes caused by collision between proton and nearby materials during the acceleration. Although the level of radiation by radioisotope decreases in length of time, radiation exposure problem still exists since workers are easily exposed by a low level of radiation for a long time due to their job assignment for maintenance or repair of the proton facility. In this paper, the working environment near cyclotron, where the highest radiation exposure is expected, was studied by measuring the degree of radiation and its duration for an appropriate level of protective action guide. To do this, we measured the radiation change in the graphite based energy degrader, the efficiency of transmitted beam and relative activation degree of the transmission beam line. The results showed that while the level of radiation exposure around cyclotron and beam line during the operation is much higher than the other radiation therapy facilities, the radiation exposure rate per year is under the limit recommended by the law showing 1~3 mSv/year.

  • PDF

치료중 실시간 모니터링을 위한 투과형 빔측정장치 개발

  • Kim, Jae-Hong;Swanepoel, M.W.;Dekock, E.A.;Park, Yeon-Su;Yang, Tae-Geon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.315-315
    • /
    • 2010
  • 양성자 빔을 이용하여 두경부 암 치료를 South Africa의 iTHEMBA에서 시행하고 있다. 200 MeV의 양성자 빔라인으로부터 진공에서 대기로 인출하여 노즐을 통과하여 종양세포에 조사된다. 치료계획에 적합하게 빔에너지와 모양을 변환하고, 빔을 모니터링하는 기계적 장치들이 노즐에 구성된다. 빔라인에는 이온챔버, Steering Magnet, Multi-wire 이온챔버, Range trimmer plates, lead scattering plate, Double-wedge energy degrader, Multi-layer Faraday cup, Range modulator, Range monitor, occluding ring, Shielding collimators, Quadrant and monitor ionization chamber, Treatment collimator, 그리고 Wellhofer dosimetry tank로 구성되어 있다. 총길이는 6.6m이며 노즐 끝에서 환자의 isocenter 까지는 30cm 정도 아래에 위치한다. 상기의 배치를 갖는 시스템의 양성자 scattering system의 성능을 MCNPX v2.5.0 Monte Carlo simulation을 실시하였다. 또한 정확한 선량을 실시간으로 측정하는 방법인 투과형 검출기를 개발하여 치료와 빔 특성을 동시에 수행하는 기술개발연구가 보고되고 있다. 본 연구에서는 Multileaf Faraday Cup (MLPC) 검출기 설계구조와 데이터 측정방법에 관한 연구를 수행하고자 한다. 빔의 전송 방향으로 3개층의 $4{\times}4$ 배열의 구조로 48 channel의 전류값을 측정하여 입자빔의 분포를 실시간으로 관측하고, 측정된 전류는 ADC를 거쳐 치료계획에 의해 선택된 영역의 SOBP를 유지하도록 range modulation propeller를 조절하는 feed-back system을 갖춘 방사선치료빔 실시간 측정장치 개발에 관한 결과를 보고하고자 한다.

  • PDF

Dose Characteristics of Total-Skin Electron-Beam Irradiation with Six-Dual Electron Fields (Six-Dual 전자선 조사면에 의한 전신 피부 조사의 선량 특성)

  • Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Radiation Oncology Journal
    • /
    • v.16 no.3
    • /
    • pp.337-345
    • /
    • 1998
  • Purpose : To obtain the uniform dose at limited depth to entire surface of the body, the dose characteristics of degraded electron beam of the large target-skin distance and the dose distribution of the six-dual electron fields were investigated Materials and Method : The experimental dose distributions included the depth dose curve, spatial dose and attenuated electron beam were determined with 300 cm of target-skin distance (TSD) and full collimator size (35*35 $cm^2$ on TSD 100 cm) in 4 MeV electron beam energy. Actual collimated field size of 105 cm * 105 cm at the distance of 300 cm could include entire hemibody. A patient was standing on step board with hands up and holding the pole to stabilize his/her positions for the six-dual fields technique. As a scatter-degrader, 0.5 cm of acrylic plate was inserted at 20 cm from the body surface on the electron beam path to induce ray scattering and to increase the skin dose. Results : The full width at half maximum(FWHM) of dose profile was 130 cm in large field of 105*105 $cm^2$ The width of $100\pm10\%$ of the resultant dose from two adjacent fields which were separated at 25 cm from field edge for obtaining the dose unifomity was extended to 186 cm. The depth of maximum dose lies at 5 mm and the 80$\%$ depth dose lies between 7 and 8 mm for the degraded electron beam by using the 0.5 cm thickness of acrylic absorber. Total skin electron beam irradiation (TSEBI) was carried out using the six dual fields has been developed at Stanford University. The dose distribution in TSEBI showed relatively uniform around the flat region of skin except the protruding and deeply curvatured portion of the body, which showed excess of dose at the former and less dose at the latter. Conclusion : The percent depth dose, profile curves and superimposed dose distribution were investigated using the degraded electron beam through the beam absorber. The dose distribution obtained by experiments of TSEBI showed within$\pm10\%$ difference except the protruding area of skin which needs a shield and deeply curvatured region of skin which needs boosting dose.

  • PDF