• Title/Summary/Keyword: energy control

Search Result 9,815, Processing Time 0.036 seconds

Energy Efficient Locomotion Control of Compliant Legged Robot (유연 다리 구조를 가진 로봇의 에너지 효율적 주행 제어)

  • Kwon, Oh-Seok;Choi, Rock-Hyun;Lee, Dong-Ha
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.76-82
    • /
    • 2012
  • In this study, we aim to develop energy efficient walking and running robot with compliant leg. So, we propose the energy efficient locomotion control method. And, we experiment the proposed control method applying to the experimental robot with compliant leg. From the experiment, we look at whether the proposed control method can the robot walk and run energy efficiently.

Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network

  • Rao, Zheheng;Zeng, Chunyan;Wu, Minghu;Wang, Zhifeng;Zhao, Nan;Liu, Min;Wan, Xiangkui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.413-435
    • /
    • 2018
  • Although the accuracy of handwritten character recognition based on deep networks has been shown to be superior to that of the traditional method, the use of an overly deep network significantly increases time consumption during parameter training. For this reason, this paper took the training time and recognition accuracy into consideration and proposed a novel handwritten character recognition algorithm with newly designed network structure, which is based on an extended nonlinear kernel residual network. This network is a non-extremely deep network, and its main design is as follows:(1) Design of an unsupervised apriori algorithm for intra-class clustering, making the subsequent network training more pertinent; (2) presentation of an intermediate convolution model with a pre-processed width level of 2;(3) presentation of a composite residual structure that designs a multi-level quick link; and (4) addition of a Dropout layer after the parameter optimization. The algorithm shows superior results on MNIST and SVHN dataset, which are two character benchmark recognition datasets, and achieves better recognition accuracy and higher recognition efficiency than other deep structures with the same number of layers.

A Novel Double-Loop Vector Control Strategy for PMSMs Based on Kinetic Energy Feedback

  • Wang, Anbang;Wang, Qunjing;Jiang, Weidong
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1256-1263
    • /
    • 2015
  • A novel vector control strategy for a permanent magnet synchronous motor (PMSM) based on the kinetic energy stored in the rotor is proposed in this paper. The novel strategy is composed of two closed loops, in which the current loop is the inner loop, and the kinetic energy serves as the outer loop. The theoretical basis and the design procedure of the two loops are given. The feasibility of the proposed control strategy is verified by experimental results. When compared with traditional vector control strategies, the proposed vector control strategy based on energy feedback has better dynamic performance. In addition, an effective estimation solution for the load variation is put forward.

Control Strategy to Interconnect the Utility Line for 3-Phase Inverter (태양광발전 시스템용 인버터의 계통연계 제어)

  • Jung, Young-Seok;Lee, Jung-Thae;Jung, Myung-Wong;Yu, Gwon-Jong;Song, Jin-Soo;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.336-338
    • /
    • 1996
  • In this paper, a simple control strategy to interconnect the utility line system for three-phase inverter. Conventionally, such interconnection is based on the 3-phase time-domain waveform analysis, though the control based on the plane defined by the two-axis theory is common in the area of the motor control. The new instantaneous power control strategy is introduced, which is based on the d-q axis theory. Simulation results show that proposed control method has good controllability with simple strategy.

  • PDF

A Comparison of Constant Current and Constant Voltage Control in LED Driver (LED driver에서의 정전류 및 정전압 제어의 비교 연구)

  • Han, Soo-Bin;Park, Suck-In;Jung, Hak-Kun;Song, Eu-Gine;Jung, Bong-Man
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.83-84
    • /
    • 2010
  • This paper reviews the performance difference between constant voltage control and constant current control in LED driver. Simulations of both control methods are performed for performance comparison especially with temperature variation. The results show that constant current control method is inherently better than constant voltage control for LED drive.

  • PDF

DISTRIBUTED CONTROL SYSTEM FOR KSTAR ICRF HEATING

  • Wang, Son-Jong;Kwak, Jong-Gu;Bae, Young-Dug;Kim, Sung-Kyu;Hwang, Churl-Kew
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.807-812
    • /
    • 2009
  • An ICRF discharge cleaning and a fast wave electron heating experiment were performed. For automated operation and providing the diagnostics of the ICRF system, the ICRF local network was designed and implemented. This internal network provides monitoring, RF protection, remote control, and RF diagnostics. All the functions of the control system were realized by customized DSP units. The DSP units were tied by a local network in parallel. Owing to the distributed feature of the control system, the ICRF local control system is quite flexible to maintain. Developing the subsystem is a more effective approach compared to developing a large controller that governs the entire system. During the first experimental campaign of the KSTAR tokamak, the control system operated as expected without any major problems that would affect the tokamak operation. The transmitter was protected from harmful over-voltage events through reliable operation of the system.

Development of Pressurizer Level Control System using Centrifugal Charging Pump and Letdown Orifices for YGN 5&6

  • Jeong, Won-Sang;Shon, Suk-Whun;Seo, Ho-Taek;Seo, Jong-Tae;Lee, Sang-Keun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.484-490
    • /
    • 1996
  • The Pressurizer Level Control System (PLCS) logic for YGN 5&6 was developed to incorporate the design changes on the Chemical and Volume Control System (CVCS). The YGN 5&6 CVCS uses the centrifugal charging pumps and letdown orifices replacing the positive displacement pumps and letdown control valves in the YGN 3&4 and UCN 3&4. The purpose of this study is to develop new PLCS as well as validate newly developed control logic and its implementation method in the simulation computer code. The analysis results show that the new PLCS has adequate ability to control the pressurizer level in response to the design bases events, and the simulation computer code is useful for YGN 5&6 NSSS design code.

  • PDF

Coordinated Control Strategy and Optimization of Composite Energy Storage System Considering Technical and Economic Characteristics

  • Li, Fengbing;Xie, Kaigui;Zhao, Bo;Zhou, Dan;Zhang, Xuesong;Yang, Jiangping
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.847-858
    • /
    • 2015
  • Control strategy and corresponding parameters have significant impacts on the overall technical and economic characteristics of composite energy storage systems (CESS). A better control strategy and optimized control parameters can be used to improve the economic and technical characteristics of CESS, and determine the maximum power and stored energy capacity of CESS. A novel coordinated control strategy is proposed considering the coordination of various energy storage systems in CESS. To describe the degree of coordination, a new index, i.e. state of charge coordinated response margin of supercapacitor energy storage system, is presented. Based on the proposed control strategy and index, an optimization model was formulated to minimize the total equivalent cost in a given period for two purposes. The one is to obtain optimal control parameters of an existing CESS, and the other is to obtain the integrated optimal results of control parameters, maximum power and stored energy capacity for CESS in a given period. Case studies indicate that the developed index, control strategy and optimization model can be extensively applied to optimize the economic and technical characteristics of CESS. In addition, impacts of control parameters are discussed in detail.

Adaptive MR damper cable control system based on piezoelectric power harvesting

  • Guan, Xinchun;Huang, Yonghu;Li, Hui;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.33-46
    • /
    • 2012
  • To reduce the vibration of cable-stayed bridges, conventional magnetorheological (MR) damper control system (CMRDS), with separate power supply, sensors and controllers, is widely investigated. In this paper, to improve the reliability and performance of the control system, one adaptive MR damper control system (AMRDS) consisting of MR damper and piezoelectric energy harvester (PEH) is proposed. According to piezoelectric effect, PEH can produce energy for powering MR damper. The energy is proportional to the product of the cable displacement and velocity. Due to the damping force changing with the energy, the new system can be adjustable to reduce the cable vibration. Compared with CMRDS, the new system is structurally simplified, replacing external sensor, power supply and controller with PEH. In the paper, taking the N26 cable of Shandong Binzhou Yellow River Bridge as example, the design method for the whole AMRDS is given, and simple formulas for PEH are derived. To verify the effectiveness of the proposed adaptive control system, the performance is compared with active control case and simple Bang-Bang semi-active control case. It is shown that AMRDS is better than simple Bang-Bang semi-active control case, and still needed to be improved in comparison with active control case.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.