• Title/Summary/Keyword: energy control

Search Result 9,870, Processing Time 0.027 seconds

Actual Energy Consumption Analysis of Temperature Control Strategies for Secondary Side Hot Water District Heating System with an Inverter (인버터시스템 적용 지역난방 시스템의 2차측 공급수 온도 제어방안에 따른 에너지사용량 실증 비교)

  • Cho, Sung-Hwan;Hong, Seong-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.179-186
    • /
    • 2015
  • In this study, the actual energy consumption of the secondary side District Heating System (DHS) with different hot water supply temperature control methods is compared. The two methods are Outdoor Temperature Reset Control and Outdoor Temperature Predictive Control. While Outdoor Temperature Reset Control has been widely used for energy savings of the secondary side system, the results show that the Outdoor Temperature Predictive Control method saves more energy. In general, the Outdoor Temperature Predictive Control method lowers the supply temperature of hot water, and it reduces standby losses and increases the overall heat transfer value of heated spaces due to more flow into the space. During actual energy consumption monitoring, the Outdoor Temperature predictive Control method saves about 6.6% of energy when compared to the Outdoor Temperature Reset Control method. Also, it is found that at partial load condition, such as during daytime, the fluctuation of hot water supply temperature with Outdoor Temperature Reset Control is more severe than that with Outdoor Temperature Predictive Control. Thus, it proves that Outdoor Temperature Predictive Control is more stable even at partial load conditions.

An Energy Control Model of Smart Video Devices for the Internet of Things (사물 인터넷 환경을 위한 스마트 비디오 디바이스의 에너지 제어 모델)

  • Jeong, Jae-Won;Lee, Myeong-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.66-73
    • /
    • 2015
  • In this paper, an architecture of a perpetual smart video device and its energy control model for the internet of things (IoT) are proposed. The smart video device consists of a processor, an image sensor, a video codec, and a network controller. In the proposed energy control model, energy consumed by image sensing, video encoding, and transmission and energy harvested by solar panels are defined as an input and an output of a battery, an energy buffer. Frame rate, quantization parameter, and operating frequency of processor are defined as the energy control parameters, and these parameters control the input and the output energy of the energy buffer, finally control the energy left in the battery. The proposed energy control model is validated by the energy consumption measurement of the smart phone based platform for various combinations of energy control parameters, and can be used for the design of perpetual smart video device.

A study on the energy efficient operation of economizer cycle control (외기냉방제어의 효율적인 운영에 관한 연구)

  • Lee, H.W.;Leigh, S.B.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.545-551
    • /
    • 1997
  • As the cooling energy requirement in an office building increases due to the increased internal heat gains, the effort to minimize the energy consumption through efficient operation of existing HVAC systems will be beneficial. In this study, one of the energy conserving efforts in an office building, operational strategies of Economizer Cycle Control have been investigated through DOE-2.1E computer simulation. The findings can be summarized : 1) Economizer Cycle Control saves energy throughout the year, 2) Econo-Limit-T must be applied seasonally based on the outside and return air conditions, 3) use of Enthalpy control is more energy efficient than that of Temperature control.

  • PDF

A Dynamic Model of a Gas Engine-Driven Heat Pump in Cooling Mode for Real-Time Simulation

  • Shin, Young-Gy;Yang, Hoon-Cheul;Tae, Choon-Seob;Jang, Cheol-Yong;Cho, Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.3
    • /
    • pp.85-93
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for the design of control algorithm. The dynamic model of a GHP was based on conservation laws of mass and energy. For the control of refrigerant pressures, actuators such as an engine throttle valve, outdoor fans, coolant three-way valves and liquid injection valves were controlled by P or PI algorithm. The simulation results were found to be realistic enough to be applied for the control algorithm design. The model could be applied to build a virtual real-time GHP system so that it interfaces with a real controller for the purpose of developing control algorithm.

Dynamics Modeling of a Gas Engine-Driven Heat Pump in Cooling Mode

  • Shin Younggy;Yang Hooncheul;Tae Choon-Seob;Jang Cheol-Yong;Cho Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.278-285
    • /
    • 2006
  • The present study has been conducted to simulate dynamics of a gas engine-driven heat pump (GHP) for design of control algorithm. The dynamics modeling of a GHP was based on conservation laws of mass and energy. For automatic control of refrigerant pressures, actuators such as engine speed, outdoor fans, coolant three-way valves and liquid injection valves were PI or P controlled. The simulation results were found to be realistic enough to apply for control algorithm design. The model can be applied to build a virtual real-time GHP system so that it interfaces with a real controller in purpose of prototyping control algorithm.

Energy-efficiency enhancement and displacement-offset elimination for hybrid vibration control

  • Makihara, Kanjuro
    • Smart Structures and Systems
    • /
    • v.10 no.3
    • /
    • pp.193-207
    • /
    • 2012
  • New insights into our previously proposed hybrid-type method for vibration control are highlighted in terms of energy analysis, such as the assessment of energy efficiency and system stability. The hybrid method improves the bang-bang active method by combining it with an energy-recycling approach. Its simple configuration and low energy-consumption property are quite suitable especially for isolated structures whose energy sources are strictly limited. The harmful influence of the external voltage is assessed, as well as its beneficial performance. We show a new chattering prevention approach that both harvests electrical energy from piezoelectric actuators and eliminates the displacement-offset of the equilibrium point of structures. The amount of energy consumption of the hybrid system is assessed qualitatively and is compared with other control systems. Experiments and numerical simulations conducted on a 10-bay truss can provide a thorough energy-efficiency evaluation of the hybrid suppression system having our energy-harvesting system.

Application of Self-Organizing Fuzzy Logic Controller to Nuclear Steam Generator Level Control

  • Park, Gee-Yong;Park, Jae-Chang;Kim, Chang-Hwoi;Kim, Jung-So;Jung, Chul-Hwan;Seong, Poong-Hyun
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.11a
    • /
    • pp.85-90
    • /
    • 1996
  • In this paper, the self-organizing fuzzy logic controller is developed for water level control of steam generator. In comparison with conventional fuzzy logic controllers, this controller performs control task with no control rules at initial and creates control rules as control behavior goes on, and also modifies its control structure when uncertain disturbance is suspected. Selected parameters in the fuzzy logic controller are updated on-line by the gradient descent loaming algorithm based on the performance cost function. This control algorithm is applied to water level control of steam generator model developed by Lee, et al. The computer simulation results confirm good performance of this control algorithm in all power ranges. This control algorithm can be expected to be used for automatic control of feedwater control system in the nuclear power plant with digital instrumentation and control systems.

  • PDF

Two-Degrees-Of-Freedom Internal Model Position Control for Slave Manipulator Teleoperated by Master Arm

  • Park, Byung-Suk;Kim, Dong-Gi;Jin, Jae-Hyun;Ahn, Sung-Ho;Song, Tae-Gil;Yoon, Ji-Sup
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.108.5-108
    • /
    • 2002
  • Recently, the more advanced control technologies are required to deal with the fast and accurate motion in manipulators. For these requirements, many manipulator control methods have been developed such as a computed torque method. This paper proposes a design method, a two-degrees-of-freedom internal model control (TDOF IMC), of the manipulator position control based on combination of the one-degree-of-freedom internal model control (ODOF IMC) system and the disturbance observer. The proposed control scheme is implemented for the position control, which leads the slave manipulator to the desired location by the master arm. The experimental results are presented and discussed through the imp...

  • PDF

Demand Control Application Strategies for Saving Electric Power Price of Central Cooling System (중앙 냉방시스템의 전력량 요금절감을 위한 디맨드제어 적용방안 연구)

  • Hwang, Jin-Won;Song, Jae-Yeob;Ahn, Byung-Cheon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • In this study, computer simulation for demand control strategies to save the electric energy and power price in the building central cooling system is done. The demand control and outdoor reset control algorithms are applied by consideration the electric energy and power price according to the energy consumption characteristics. The suggested control methods show better responses in the power price and energy consumption in comparison with the conventional one.

A Study on the Evaluation of Lighting Energy Consumption by Control Strategy of the Electric Lighting (전기조명 제어 전략에 따른 조명에너지 소비량 평가에 관한 연구)

  • Yun, Gyeong;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.12 no.1
    • /
    • pp.119-125
    • /
    • 2012
  • The objective of this study is to evaluate the electric lighting energy consumption carried out by Daysim program. A comparison between the measurement and simulated exterior global horizontal illuminance shows differences about 10% and it is very similar to the measurement. The interior illuminance simulated by Daysim are 18.9% lower than the measurement and simulated lighting energy consumption is 10% lower than the measurement. Corrected annual lighting energy simulation results show that the best case is the combination of occupancy switch-off and dimming system with automatic controlled blinds (E-3). In case of no blinds, it occasionally derives the minimum lighting energy consumption but it causes the glare, so we need to be careful for choosing the control strategy. For the overcast sky, the lighting energy consumption is not changed significantly by control strategy while the lighting energy in the clear sky is changed noticeably. So we must know the right strategy for each case to control the electric lights and blinds.