• Title/Summary/Keyword: energy consumption curve

Search Result 66, Processing Time 0.034 seconds

Energy Efficient Cooperative LEACH Protocol for Wireless Sensor Networks

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of Communications and Networks
    • /
    • v.12 no.4
    • /
    • pp.358-365
    • /
    • 2010
  • We develop a low complexity cooperative diversity protocol for low energy adaptive clustering hierarchy (LEACH) based wireless sensor networks. A cross layer approach is used to obtain spatial diversity in the physical layer. In this paper, a simple modification in clustering algorithm of the LEACH protocol is proposed to exploit virtual multiple-input multiple-output (MIMO) based user cooperation. In lieu of selecting a single cluster-head at network layer, we proposed M cluster-heads in each cluster to obtain a diversity order of M in long distance communication. Due to the broadcast nature of wireless transmission, cluster-heads are able to receive data from sensor nodes at the same time. This fact ensures the synchronization required to implement a virtual MIMO based space time block code (STBC) in cluster-head to sink node transmission. An analytical method to evaluate the energy consumption based on BER curve is presented. Analysis and simulation results show that proposed cooperative LEACH protocol can save a huge amount of energy over LEACH protocol with same data rate, bit error rate, delay and bandwidth requirements. Moreover, this proposal can achieve higher order diversity with improved spectral efficiency compared to other virtual MIMO based protocols.

Effect of Pulp Properties on the Power Consumption in Low Consistency Refining

  • LIU, Huan;DONG, Jixian;QI, Kai;GUO, Xiya;YAN, Ying;QIAO, Lijie;DUAN, Chuanwu;ZHAO, Zhiming
    • Journal of the Korean Wood Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.869-877
    • /
    • 2020
  • The power consumption in the low consistency (LC) refining is an important indicator for the optimal control of the process and it is composed of the net power and the no-load power. The refining efficiency and process characterization of LC refining are directly affected by power consumption. In this paper, the effect of pulp consistency and average fiber length on the power consumption and refining efficiency were studied through the LC refining trials conducted by an experimental disc refiner. It is found that the curve of power-gap clearance can be divided into constant power section, power reduction section, and power increase section. And the no-load power and the adjustable domain of loading applied by the refining plates will increase as the increase of pulp consistency, while the increase of net power is larger than that of no-load power which makes the increasing of refining efficiency. Meanwhile, the adjustable domain of loading applied by the refining plates can be slightly improved by increasing the average fiber length, but its effect on the no-load power in the LC refining process can be neglected. The study of power consumption in LC refining is of positive significance for the proper selection of pulp properties in LC refining, in-depth exploration of refining mechanism, and energy consumption reduction in refining.

NUMERICAL STUDY OF A CENTRIFUGAL PUMP PERFORMANCE WITH VARIOUS VOLUTE SHAPE (볼루트의 형상 변화가 원심펌프 성능에 미치는 영향에 대한 수치해석)

  • Lee, J.H.;Hur, N.;Yoon, I.S.
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.35-40
    • /
    • 2015
  • Centrifugal pumps consume considerable amounts of energy in various industrial applications. Therefore, improving the efficiency of pumps machine is a crucial challenge in industrial world. This paper presents numerical investigation of flow characteristics in volutes of centrifugal pumps in order to compare the energy consumption. A wide range of volumetric flow rate has been investigated for each case. The standard k-${\varepsilon}$ is adopted as the turbulence model. The impeller rotation is simulated employing the Multi Reference Frames(MRF) method. First, two different conventional design methods, i.e., the constant angular momentum(CAM) and the constant mean velocity (CMV) are studied and compared to a baseline volute model. The CAM volute profile is a logarithmic spiral. The CMV volute profile shape is an Archimedes spiral curve. The modified volute models show lower head value than baseline volute model, but in case of efficiency graph, CAM curve has higher values than others. Finally for this part, CAM curve is selected to be used in the simulation of different cross-section shape. Two different types of cross-section are generated. One is a simple rectangular shape, and the other one is fan shape. In terms of different cross-section shape, simple rectangular geometry generated higher head and efficiency. Overall, simulation results showed that the volute designed using constant angular momentum(CAM) method has higher characteristic performances than one by CMV volute.

The Relationship between Korea Agricultural Productions and Greenhouse Gas Emissions Using Environmental Kuznets Curve (환경쿠즈네츠곡선을 이용한 한국의 농업 생산과 온실가스 배출의 관계 분석)

  • Kang, Hyun-Soo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.209-223
    • /
    • 2021
  • Purpose - The purpose of this study was to investigate the relationship between Korea agricultural productions and Greenhouse Gas (GHG) emissions based on Environmental Kuznets Curve (EKC) hypothesis. Design/methodology/approach - This study utilized time series data of economic growth, greenhouse gas, agricultural productions, trade dependency, and energy usages. In order to econometric procedure of EKC hypothesis, this study utilized unit root test and cointegration test to check staionarity of each variable and also adopted Vector Error Correction Model (VECM) and Ordinary Least Square (OLS) to analyze the short and long run relationships. Findings - In the short run, greenhouse gas emissions resulting from economic growth show an inverse U-shape relationship, and an increase in agricultural production and energy consumption led to increase in greenhouse gas emission. In the long run, total GHG emissions and CO2 emissions show an N-shaped relationship with economic growth, and an increase in agricultural production has resulted in a decrease in total GHG and CO2 emissions. However, methane (CH4) and nitrous oxide (N2O) emissions showed an inverse U-shape relationship with economic growth, which indicated the environment and production process of agricultural production. Research implications or Originality - Korea agricultural production has different effects on the GHG emission sources, and in particular, methane (CH4) and nitrous oxide (N2O) emissions show to increase as the agricultural production expansions, so policy or technological development in related sector is required. Especially, in the context of the 2030 GHG reduction road-map, if GHG-related reduction technologies or policies are spread, national GHG emission reduction targets can be achieved and this is possible to predict the decline in production in the sector and damage to the related industries.

The Comparison of Overground Walking and Treadmill Walking According to the Walking Speed: Motion Analysis and Energy Consumption (보행속도에 따른 지면보행과 Treadmill 보행의 비교: 운동분석 및 에너지 소모)

  • Sohn, R.H.;Choi, H.S.;Son, J.S.;Hwang, S.J.;Kim, Y.H.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.3
    • /
    • pp.226-232
    • /
    • 2009
  • In this study, treadmill walking and overground walking were compared at the same condition based on kinematics and energy expenditures(EE). In addition, we compared the actual energy expenditure and calculated EE by treadmill. The kinematics of treadmill and overground walking were very similar. The values at each joint were significantly different(P<0.05), but magnitude of the difference was generally less than 4$^{\circ}$. In the EE using cardiopulmonary exercise, EE of treadmill walking was significantly greater when measured on the overground. It seemed to be the increased stress during the gait by the continuous movement of the belt. As the velocity increased, there was significant difference between actual EE and calculated EE by treadmill due to EE curve increasing exponentially. Therefore the further study would be required to find the correlation of the two methods and calibrate the values from them.

The Analysis of Effect in Order to Consider Combined Heat and Power Capacity in the Basic Plan of Long Term Electricity Supply & Demand (전력수급기본계획에 열병합발전 설비 반영시의 효과분석에 관한 연구)

  • Kim, Yong-Ba;Moon, Jung-Ho;Yeon, Jun-Hee;Jung, Hyun-Sung;Woo, Sung-Min;Kim, Mi-Ye
    • Journal of Energy Engineering
    • /
    • v.16 no.1 s.49
    • /
    • pp.22-31
    • /
    • 2007
  • This paper addresses methodology in order to consider CHP (Combined Heat and Power) capacity in the Basic Plan of Long Term Electricity Supply & Demand and presents effects on it. The method performs state in extent that do not change maximum in the Basic Plan of Long Term Electricity Supply & Demand. For analysis that occurs some advantage this method compares with Basic Plan of Long Term Electricity Supply & Demand. It includes EES (Expected Energy Served), Fuel consumption, amount of $CO_{2}$ emission reduction.

Modeling of Hybrid Railway Vehicles with Hydrogen Fuel-Cell/Battery using a Rule-Based Algorithm (규칙기반 알고리즘을 이용한 수소연료전지/배터리 하이브리드 철도차량 모델링)

  • Oh, Yoon-Gi;Han, Byeol;Oh, Yong-Kuk;Ryu, Joon-Hyoung;Lee, Kyo-Beum
    • Journal of IKEEE
    • /
    • v.24 no.2
    • /
    • pp.610-618
    • /
    • 2020
  • This paper presents the modeling of hybrid railway vehicles with hydrogen Fuel-Cells (FCs)/battery using a rule-based algorithm. The driving power of traction system is determined with the speed-torque curve by operation area of the electric machine and the electrical systems are modeled. The demanded power of electrical systems is set with the energy management system (EMS). The consumption of hydrogen is effectively managed with the subdivided operation region depending on the state of charge (SOC). The validity of the modeling is verified using MATLAB/Simulink.

Study on the Device for Pump Efficiency Measurement (펌프의 효율측정 장비에 관한 연구)

  • Bae, Cherl-O
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.33
    • /
    • pp.53-62
    • /
    • 2012
  • Pumps are used widely in feed water, cooling & heating system and process line of industrial and construction fields. They consume nearly 20% of the each nation's total electrical energy. But The management of pump energy wasn't controlled well. Their loss of energy is huge if they have been operated at low efficiency. The first buying cost of pump is small compare to the power consumption of pump, so we can recommend the suitable replace time and best operating condition of parts and pump to measure the pump efficiency. Pump efficiency is usually measured according to the two methods which they are called thermodynamic method and traditional technique. And we measured the pump efficiency using two methods using potable pump efficiency measurement device and compared the results with the real performance curve offered from pump maker.

  • PDF

Mechanics model of novel compound metal damper based on Bi-objective shape optimization

  • He, Haoxiang;Ding, Jiawei;Huang, Lei
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.363-371
    • /
    • 2022
  • Traditional metal dampers have disadvantages such as a higher yield point and inadequate adjustability. The experimental results show that the low yield point steel has superior energy dissipation hysteretic capacity and can be applied to seismic structures. To overcome these deficiencies, a novel compound metal damper comprising both low yield point steel plates and common steel plates is presented. The optimization objectives, including "maximum rigidity" and "full stress state", are proposed to obtain the optimal edge shape of a compound metal damper. The numerical results show that the optimized composite metal damper has the advantages such as full hysteresis curve, uniform stress distribution, more sufficient energy consumption, and it can adjust the yield strength of the damper according to the engineering requirements. In view of the mechanical characteristics of the compound metal damper, the equivalent model of eccentric cross bracing is established, and the approximate analytical solution of the yield strength and the yield displacement is proposed. A nonlinear simulation analysis is carried out for the overall aseismic capacity of three-layer-frame structures with a compound metal damper. It is verified that a compound metal damper has better energy dissipation capacity and superior seismic performance, especially for a damper with double-objective optimized shape.

Estimation and utilization of transport LPG demand function (수송용 LPG 수요함수의 추정 및 활용)

  • Lee, Seung-Jae;Han, Jong-Ho;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.21 no.3
    • /
    • pp.301-308
    • /
    • 2012
  • This paper attempts to estimate the demand function for the transport LPG and to analyze long-run and short-run price and income elasticities. In addition, the paper measures consumer surplus and economic value ensuing from the transport LPG consumption by utilizing the estimated long-run price elasticity. The price and the income data are the monthly real transport LPG price and the monthly composite index adjusted by real transport LPG price from 2003 to 2012. Unit root test, co-integration test and error correction model are to take the procedure of estimation of demand curve. The demand for transport LPG is considered to be inelastic and the long-run demand is more elasticity than that of short-run. Price elasticity of demand estimate here is -0.422, and the estimated consumer surplus and economic value in 2010/03 are 966 and 1,781 billion won, respectively.