• 제목/요약/키워드: energy constraint

Search Result 332, Processing Time 0.155 seconds

Systematic Network Coding for Computational Efficiency and Energy Efficiency in Wireless Body Area Networks (무선 인체 네트워크에서의 계산 효율과 에너지 효율 향상을 위한 시스테매틱 네트워크 코딩)

  • Kim, Dae-Hyeok;Suh, Young-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.10A
    • /
    • pp.823-829
    • /
    • 2011
  • Recently, wireless body area network (WBAN) has received much attention as an application for the ubiquitous healthcare system. In WBAN, each sensor nodes and a personal base station such as PDA have an energy constraint and computation overhead should be minimized due to node's limited computing power and memory constraint. The reliable data transmission also must be guaranteed because it handles vital signals. In this paper, we propose a systematic network coding scheme for WBAN to reduce the network coding overhead as well as total energy consumption for completion the transmission. We model the proposed scheme using Markov chain. To minimize the total energy consumption for completing the data transmission, we made the problem as a minimization problem and find an optimal solution. Our simulation result shows that large amount of energy reduction is achieved by proposed systematic network coding. Also, the proposed scheme reduces the computational overhead of network coding imposed on each node by simplify the decoding process.

The Energy Efficiency of Improved Routing Technique Based on The LEACH

  • Gauta, Ganesh;Cho, Seongsoo;Jung, Kyedong;Lee, Jong-Yong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.1
    • /
    • pp.49-56
    • /
    • 2015
  • As WSN is energy constraint so energy efficiency of nodes is important. Because avoiding long distance communication, clustering operating in rounds is an efficient algorithm for prolonging the lifetime of WSN and its performance depends on duration of a round. A short round time leads to frequent re-clustering while a long round time increases energy consume of cluster heads more. So existing clustering schemes determine proper round time, based on the parameters of initial WSN. But it is not appropriate to apply the round time according to initial value throughout the whole network time because WSN is very dynamic networks nodes can be added or vanished. In this paper we propose a new algorithm which calculates the round time relying on the alive node number to adapt the dynamic WSN. Simulation results validate the proposed algorithm has better performance in terms of energy consumption of nodes and loss rate of data.

A study on the operation performance control of urban rail vehicle using an optimal control (최적제어를 이용한 도시철도 차량 주행제어 연구)

  • Tak Kil Hun;Kim Dong-Hwan;Kim Chi Tae
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.107-112
    • /
    • 2005
  • When it comes to automatic operation control of urban rail vehicle, a PID control makes it run between stations within the fixed time and stop exactly at the stop sign on the platform, satisfying jerk limit. An optimal control is applied to automatic operation performance control to minimize energy consumption while the urban rail vehicle satisfies automatic operation condition on this paper. The control performance in terms of energy minimization along with the constraint on precision stops is compared between the optimal control and PID control.

  • PDF

A Source-Related Approach for Discussion on Using Radionuclide-Contaminated Materials in Post-accident Rehabilitation

  • Kazuji Miwa;Takeshi Iimoto
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.2
    • /
    • pp.68-76
    • /
    • 2023
  • Background: In the process of discussion on the possibility of using radionuclide-contaminated soil and debris generated by radiation disasters, a strategy for the proper management of radiation exposure protection while considering the source of the contaminated materials is necessary. Materials and Methods: The radiological protection criteria that are likely to be applied to the source-related approach based on the International Commission on Radiological Protection recommendations and the International Atomic Energy Agency safety standards are summarized. We proposed five interpretations of radiation protection to contribute to the promotion of discussion on the possibility of using a part of low-level-radionuclide-contaminated soil and debris in the post-accident rehabilitation. Interpretations I to III are based on the idea of "using a reference level to protect the public in post-accident rehabilitation," whereas IV and V are based on the idea of "using the dose constraint to protect the public in the post-accident rehabilitation when the sources are handled in a planned activity." The former idea is subdivided into three based on the definition of the source, which is managed by the reference level, and the latter idea is divided into two depending on whether or not additional dose from using contaminated materials is deemed acceptable. Results and Discussion: To confirm the applicability of the five interpretations presented, we suggested the concrete values of protection criteria via two feasible cases. In this case study, we proposed radiation protection by the dose constraint based on the Interpretation IV and chose 1 mSv/yr for the public and 20 mSv/yr for workers dealing with radionuclide-contaminated materials. Conclusion: We concretely and systematically demonstrated how the concept of radiation protection can be applied to the process of discussion on the possibility of using radionuclide-contaminated materials within the framework of an international system of protection. This study's findings can provide necessary information to discuss the possibility of using radionuclide-contaminated materials as an alternative option for recovery and reconstruction after a radiation disaster from the viewpoint of radiation protection.

Reliability-Based Shape Optimization Under the Displacement Constraints (변위 제한 조건하에서의 신뢰성 기반 형상 최적화)

  • Oh, Young-Kyu;Park, Jae-Yong;Im, Min-Gyu;Park, Jae-Yong;Han, Seog-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.589-595
    • /
    • 2010
  • This paper presents a reliability-based shape optimization (RBSO) using the evolutionary structural optimization (ESO). An actual design involves uncertain conditions such as material property, operational load, poisson's ratio and dimensional variation. The deterministic optimization (DO) is obtained without considering of uncertainties related to the uncertainty parameters. However, the RBSO can consider the uncertainty variables because it has the probabilistic constraints. In order to determine whether the probabilistic constraint is satisfied or not, simulation techniques and approximation methods are developed. In this paper, the reliability-based shape design optimization method is proposed by utilization the reliability index approach (RIA), performance measure approach (PMA), single-loop single-vector (SLSV), adaptive-loop (ADL) are adopted to evaluate the probabilistic constraint. In order to apply the ESO method to the RBSO, a sensitivity number is defined as the change of strain energy in the displacement constraint. Numerical examples are presented to compare the DO with the RBSO. The results of design example show that the RBSO model is more reliable than deterministic optimization.

Optimum Design of Vehicle Powertrain Mounting System (자동차용 파워트레인 마운팅 시스템의 최적설계)

  • Kim, J.H.;Lee, S.J.;Lee, W.H.;Kim, J.R.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.33-38
    • /
    • 2010
  • Technology of vehicle industry has been developing and it is required a better vehicle performance than before. Therefore, the consumers are asking not only an economic efficiency, functionality, polished design, ride comfort and silence but also a driving stability. The ride comfort, silence and driving stability are influenced by the size of vehicle and various facilities. But the principal factor is a room noise and vibration sensed by a driver and passenger. Thus, the NVH of vehicle has been raised and used as a principal factor for evaluation of vehicle performance. The primary objective of this study is an optimized design of powertrain mounting system. To optimized design was applied MSC.Nastran optimization modules. Results of dynamic analysis for powertrain mounting system was investigated. By theses results, design variables was applied 12 dynamic spring constant. And the weighting factor according to translational displacement and rotational displacement applied 3 cases. The objective function was applied to minimize displacement of powertrain. And the design variable constraint was imposed dynamic spring constant ratio. The constraint of design variable for objective function was imposed bounce displacement for powertrain.

Two Optimization Techniques for Channel Assignment in Cellular Radio Network (본 논문에서는 신경회로망과 유전자 알고리즘을 이용하여 셀룰러 무선채널 할당을 위한 두 가지 최적화 기법)

  • Nam, In-Gil;Park, Sang-Ho
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.2
    • /
    • pp.439-448
    • /
    • 1999
  • In this paper, two optimization algorithms based on artificial neural networks and genetic algorithms are proposed for cellular radio channel assignment problems. The channel assignment process is characterized as minimization of the energy function which represents constraints of the channel assignment problems. All three constraints such as the co-channel constraint, the adjacent channel constraint and the co-site channel constraint are considered. In the neural networks approach, certain techniques such as the forced assignment and the changing cell order are developed, and in the genetic algorithms approach, data structure and proper genetic operators are developed to find optimal solutions, As simulation results, the convergence rates of the two approaches are presented and compared.

  • PDF

Topology Optimization of Plane Structures using Modal Strain Energy for Fundamental Frequency Maximization

  • Lee, Sang-Jin;Bae, Jung-Eun
    • Architectural research
    • /
    • v.12 no.1
    • /
    • pp.39-47
    • /
    • 2010
  • This paper describes a topology optimization technique which can maximize the fundamental frequency of the structures. The fundamental frequency maximization is achieved by means of the minimization of modal strain energy as an inverse problem so that the strain energy based resizing algorithm is directly used in this study. The strain energy to be minimized is therefore employed as the objective function and the initial volume of structures is used as the constraint function. Multi-frequency problem is considered by the introduction of the weight which is used to combine several target modal strain energy terms into one scalar objective function. Several numerical examples are presented to investigate the performance of the proposed topology optimization technique. From numerical tests, it is found to be that the proposed optimization technique is extremely effective to maximize the fundamental frequency of structure and can successfully consider the multi-frequency problems in the topology optimization process.

Bitcoin and Its Energy Usage: Existing Approaches, Important Opinions, Current Trends, and Future Challenges

  • Mir, Usama
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3243-3256
    • /
    • 2020
  • Recent years have shown a great interest of public in buying and selling of crypto/digital currency. With hundreds of digital currencies in financial market, bitcoin remains the most widely used, adapted, and accepted currency around the world. However, the critics of bitcoin still consider it a threat to modern day power usage. This paper discusses the important pitfalls, pros, and cons related to bitcoin's energy consumption. The paper begins by highlighting the flexibilities cryptocurrency can bring to online money transfers compared to traditional 'fiat' architecture. Then, the focus of the paper entirely remains on listing various facts related to bitcoin's energy utilization including a brief description of several emerging approaches for energy optimization. This paper is concluded by revealing key current challenges associated to bitcoin's energy usage.