• 제목/요약/키워드: energy based procedures

검색결과 208건 처리시간 0.027초

Preliminary Study on Rapid Measurement of Gross Alpha/Beta and 90Sr Activities in Surface Soil by Mobile ZnS(Ag)/PTV Array and Handheld PVT Rod with Gated Energy Channels

  • Lee, Chanki;Kim, Hee Reyoung
    • Journal of Radiation Protection and Research
    • /
    • 제46권4호
    • /
    • pp.194-203
    • /
    • 2021
  • Background: Surface soil radiation monitoring around nuclear facilities is important to classify and characterize the contaminated areas. A scanning and direct measurement technique can survey the sites rapidly before starting sampling analysis. Materials and Methods: Regarding this, we test and suggest a measurement technique for gross alpha/beta and 90Sr activities in surface soil based on a mobile ZnS(Ag)/PVT (polyvinyltoluene) array and a handheld PVT rod, respectively. To detect 90Sr selectively in soil mixed with naturally occurring radioactive materials, chosen energy channel counts from the multichannel analyzers were used instead of whole channel counts. Soil samples contaminated with exempt liquid 90Sr with 1 Bq·g-1, 3 Bq·g-1, and 10 Bq·g-1 were prepared and hardened by flocculation. Results and Discussion: The mobile ZnS(Ag)/PVT array could discriminate gross alpha, gross beta, and gamma radiation by the different pulse-shaped signal features of each sensor material. If the array is deployed on a vehicle, the scan minimum detectable concentration (MDC) range will be about 0.11-0.17 Bq·g-1 at 18 km·h-1 speed, highly sensitive to actual sites. The handheld PVT rod with 12 mm (Φ) × 20 mm (H) size can directly measure 90Sr selectively if channels on which energies are from 1,470 and 2,279 keV are gated, minimizing crossdetection of other radionuclides. These methods were verified by measuring soil samples fabricated with homogeneous 90Sr concentrations, showing static MDC of 2.16 Bq·g-1 at a measurement time of 300 seconds. Conclusion: Based on the results, comprehensive procedures using these detectors are suggested to optimize soil sites survey.

Deep Learning-based Depth Map Estimation: A Review

  • Abdullah, Jan;Safran, Khan;Suyoung, Seo
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.1-21
    • /
    • 2023
  • In this technically advanced era, we are surrounded by smartphones, computers, and cameras, which help us to store visual information in 2D image planes. However, such images lack 3D spatial information about the scene, which is very useful for scientists, surveyors, engineers, and even robots. To tackle such problems, depth maps are generated for respective image planes. Depth maps or depth images are single image metric which carries the information in three-dimensional axes, i.e., xyz coordinates, where z is the object's distance from camera axes. For many applications, including augmented reality, object tracking, segmentation, scene reconstruction, distance measurement, autonomous navigation, and autonomous driving, depth estimation is a fundamental task. Much of the work has been done to calculate depth maps. We reviewed the status of depth map estimation using different techniques from several papers, study areas, and models applied over the last 20 years. We surveyed different depth-mapping techniques based on traditional ways and newly developed deep-learning methods. The primary purpose of this study is to present a detailed review of the state-of-the-art traditional depth mapping techniques and recent deep learning methodologies. This study encompasses the critical points of each method from different perspectives, like datasets, procedures performed, types of algorithms, loss functions, and well-known evaluation metrics. Similarly, this paper also discusses the subdomains in each method, like supervised, unsupervised, and semi-supervised methods. We also elaborate on the challenges of different methods. At the conclusion of this study, we discussed new ideas for future research and studies in depth map research.

Unified plastic-damage model for concrete and its applications to dynamic nonlinear analysis of structures

  • Wu, Jian-Ying;Li, Jie
    • Structural Engineering and Mechanics
    • /
    • 제25권5호
    • /
    • pp.519-540
    • /
    • 2007
  • In this paper, the energy-based plastic-damage model previously proposed by the authors [International Journal of Solids and Structures, 43(3-4): 583-612] is first simplified with an empirically defined evolution law for the irreversible strains, and then it is extended to its rate-dependent version to account for the strain rate effect. Regarding the energy dissipation by the motion of the structure under dynamic loadings, within the framework of continuum damage mechanics a new damping model is proposed and incorporated into the developed rate-dependent plastic-damage mode, leading to a unified constitutive model which is capable of directly considering the damping on the material scale. Pertinent computational aspects concerning the numerical implementation and the algorithmic consistent modulus for the unified model are also discussed in details, through which the dynamic nonlinear analysis of damping structures can be coped with by the same procedures as those without damping. The proposed unified plastic-damage model is verfied by the simulations of concrete specimens under different quasistatic and high rate straining loading conditions, and is then applied to the Koyna dam under earthquake motions. The numerical predictions agree fairly well with the results obtained from experimental tests and/or reported by other investigators, demonstrating its capability for reproducing most of the typical nonlinear performances of concrete under quasi-static and dynamic loading conditions.

DARS에 의한 CAPSS 배출자료의 불확도 평가 (Uncertainty Assessment for CAPSS Emission Inventory by DARS)

  • 김정;장영기
    • 한국대기환경학회지
    • /
    • 제30권1호
    • /
    • pp.26-36
    • /
    • 2014
  • The uncertainty assessment is important to improve the reliability of emission inventory data. The DARS (Data Attribute Rating System) have recommended as the uncertainty assessment technic of emission inventory by U.S. EPA (Environmental Protection Agency) EIIP (Emission Inventory Improvement Program). The DARS score is based on the perceived quality of the emission factor and activity data. Scores are assigned to four attributes; measurement/method, source specificity, spatial congruity and temporal congruity. The resulting emission factor and activity rate scores are combined to arrive at an overall confidence rating for the inventory. So DARS is believed to be a useful tool and may provide more information about inventories than the usual qualitative grading procedures (e.g. A through E). In this study, the uncertainty assessment for 2009 CAPSS (Clean Air Policy Support System) emission inventory is conducted by DARS. According to the result of this uncertainty assessment, the uncertainty for fugitive dust emission data is higher than other sources, the uncertainty of emission factor for surface coating is the highest value, and the uncertainty of activity data for motor cycle is the highest value. Also it is analysed that the improvement of uncertainty for activity data is as much important as the improvement for emission factor to upgrade the reliability of CAPSS emission inventory.

음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험 (Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation)

  • 박순홍;정호경;서상현;장영순;이영무;조광래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF

수소 생산을 위한 알칼라인 수전해장치 상용품 제작 (Commercial Production for the Hydrogen Generation with Alkaline Electrode Cells)

  • 김보연;김동진;강은영;김태완;심희찬;이택홍
    • 한국수소및신에너지학회논문집
    • /
    • 제26권3호
    • /
    • pp.206-211
    • /
    • 2015
  • For the hydrogen production, Gas Lab and Gnc make alkaline watrer electrolyzer and found optimized condition of experimental parameters of cell material and operating procedures. For the commercial production, we saved electric power consumption and caloric based efficiency with over 70%. Used cell pressures are 10 bar, 30 bar and consumed electricity is $4,000A/m^2$, 4.19 kW ($T=100^{\circ}C$) at 10 bar. Another data is $2,000A/m^2$, 3.92 kW ($T=95^{\circ}C$) at 30 bar. Applied voltage is 1.75 V ($100^{\circ}C$, 10 bar), 1.64 V ($95^{\circ}C$, 10 bar), 1.81 V ($85^{\circ}C$, 30 bar), 1.76 V ($95^{\circ}C$, 30 bar). As cell temperature increase, applied voltage has been decreased and current has been increased. The concentration of KOH solution is 30 weight %.

A Study on the Operator Performance According to the Drastic Change of Illumination Level and Lighting Environment of Control Room in Nuclear Power Plants

  • Shin, Kwang Hyeon;Lee, Yong Hee
    • 대한인간공학회지
    • /
    • 제32권1호
    • /
    • pp.37-45
    • /
    • 2013
  • Objective: This study describes the change of operator performance in drastic change of illumination level, and proposes an alternative method to cope with it. Background: The control standard of illumination for nuclear power plants(NPPs) is based on the set of limit criteria for maintaining a specific illumination level. However, there is a possibility to cause human errors according to the psychological and physiological influences to operators in the situation of drastic change of illumination such as SBO(Station Black Out), so a basic study is necessary to review the current approach. Method: We assessed the visual fatigue, subjective work load and task performance according to the three illumination situations(Normal Illumination, Emergency Illumination, and Drastic Change of Illumination). Result: Research finding shows that there are not significant differences in task performance between normal illumination (1,000lx level) and emergency illumination (100lx level), only if beyond the dark adaptation limit. However, subjective work load on mental demand and visual fatigue show a potential challenge to visual performance in drastic change of illumination. Conclusion/Application: Several trials can complement this challenge in NPPs by applying 3-way communication, enhancing readability of procedures, and managing the visual factors affecting the operators' performance through a Visual Environment Management Program including visual health aspects, etc.

Analysis and Test of Hydrodynamic Ram in Welded Metallic Water Tanks

  • Kim, Jong Heon;Kim, Chun-Gon;Jun, Seungmoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.41-49
    • /
    • 2015
  • Analysis and test of hydrodynamic ram in welded metallic tanks containing water were performed to investigate the phenomena and to understand the effects on the resulting structural behavior. Arbitrary Lagrange-Euler coupling method was used for the analysis of the fluid-structure interaction occurring in the hydrodynamic ram, where the projectile, tank, and water are exchanging load, momentum, and energy during the traveling of the projectile through the water of the tank. For a better representation of the physical phenomena, modeling of the welded edges is added to the analysis to simulate the earlier weld line fracture and its influence on the resulting hydrodynamic ram behavior. Corresponding hydrodynamic tests were performed in a modified gas gun facility, and the following panel-based examinations of various parameters, such as displacement, velocity, stress, and energy, as well as hydrodynamic ram pressure show that the analysis and test are well correlated, and thus the results of the study reasonably explain the characteristics of the hydrodynamic ram. The methodology and procedures of the present study are applicable to the hydrodynamic ram assessment of airframe survivability design concepts.

해상풍력발전 캡스톤 디자인 사례 연구 (A Capstone Design Case Study for Offshore Wind Power)

  • 우진호;나원배
    • 수산해양교육연구
    • /
    • 제25권1호
    • /
    • pp.167-180
    • /
    • 2013
  • A capstone design is regarded as one of cap courses in undergraduate engineering education because it requires most prerequisites and makes students experience real engineering design processes. There have been case studies to show how this subject should be organized, practiced, and optimized. This study shows one of the case studies by focusing offshore wind power, one of newly recognized renewable energy resources, especially targeting for the design of wind turbine foundation and submarine power cable protectors mainly because of current energy and global warming crisis. To pinpoint engineering design, the students'activities during the project and design procedures are monitored, evaluated, and recommended; hence, core factors are addressed to develop successful aim, theory, practice, and other necessities. These factors include creative problem solving abilities; recognition of engineering curriculum; selection of project theme based on significance, ripple effect, and education purpose; team organization by the full brain model; systematization of project process; realization of engineering design; and synthesis of evaluation. In the end, the aftermath and future works are discussed.

체외충격파 치료기(Extracorporeal Shockwave Therapy)의 성능평가 및 보완사항에 관한 연구 (Study on the Performance Evaluation and Supplementations of Extracorporeal Shockwave Therapy)

  • 오찬우;박상건;박홍규
    • 전기학회논문지P
    • /
    • 제67권1호
    • /
    • pp.52-56
    • /
    • 2018
  • Extracorporeal shockwave therapy has been widely spread out showing an excellent efficacy compared to traditional medicinal treatments, interventional procedures or surgeries for diseases of tendons and musculoskeletal system. Major performance tests of extracorporeal shockwave therapy consist of pressure, energy flux, concentration, and effective amount of energy on the focus area of shockwave according to IEC 61846. Shockwave should be irradiated accurately to the lesion area to improve the performance of extracorporeal shockwave therapy, which makes it necessary to add the relevant section, IEC 60601-2-36 (12.1.101. Precision of Target Markers and Target Locations). International standards of extracorporeal shockwave therapy have been prepared based on European and western people. Thus, we need to conduct many studies on Korean patients to improve the quality of extracorporeal shockwave therapy and to develop the medical industry. In addition, the performance evaluation of extracorporeal shockwave therapy which has been prepared according to international standards should be additionally modified and supplemented corresponding to the Korean circumstances.