The $SnS_2,\;SnS_2:Cd$, and $SnS_2:Sb$ single crystals were grown by the chemical transport reaction method. The indirect optical energy band gap was found to be 2.348, 2.345, and 2.343 eV for the $SnS_2,\;SnS_2:Cd$, and $SnS_2:Sb$ single crystals, at 6 K respectively. The direct optical energy band gap was found to be 2.511, 2.505, and 2.503 eV f3r the $SnS_2,\;SnS_2:Cd$, and $SnS_2:Sb$ single crystals, at 6 K respectively The temperature dependence of the optical energy band gap was well fitted by the Varshni equation. Two photoluminescence emission peaks with the peak energy of 2.214 and 1.792 eV for $SnS_2$, 2.214 and 1.837 eV for $SnS_2:Cd$, and 2.214 and 1.818 eV the $SnS_2:Sb$ were observed. The emission peaks were described as originating from the donor-acceptor pair recombinations.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.15
no.9
/
pp.770-775
/
2002
We present the band lineups of G $e_{1-}$x S $n_{x}$ G $e_{1-}$y S $n_{y(001)}$ heterostructures for the new devices. The energy gap of the bulk G $e_{1-}$x S $n_{x}$ alloy is calculated by taking into account the Vegard's law. The change of the energy gap due to the strain is understood in terms of the deformation Potential theory The valence band offset is obtained from the average bond energy model, where the changes of the band offset due to alloy compositions and strain are included. It is found that Ge/G $e_{1-}$y S $n_{y(001)}$ heterostructure has a staggered lineup type for 0$\leq$0.06 and a straddling one for 0.06$\leq$0.26. Meanwhile, Ge/G $e_{l-y}$ S $n_{y(001)}$ heterostructure has a staggered lineup type for 0$\leq$0.19 and a broken-gap one for 0.19$\leq$0.26. As a result, the various type of the G $e_{1-}$x S $n_{x}$ G $e_{1-}$y S $n_{y(001)}$ heterostructure can be applied for the useful device.evice.
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.305-305
/
2013
태양전지는 무기태양전지와 유기태양전지 등이 연구 되고 있는데 [1] 그 중 유기물질의 장점(높은 수율, solution phase processing, 저비용으로 전력 생산)과 무기재료의 장점(높은 전자 이동도, 넓은 흡수 범위, 우수한 환경 및 열 안정성)을 융합함으로써 장기적 구조안정성의 확보와 광전변환의 고 효율화를 동시에 달성하기 위한 유기무기 하이브리드 태양전지가 최근 큰 관심을 끌고 있다[2]. 본 연구에서는 hybrid photovoltaics에 유기물 MDMO-PPV와 전도성 고분자 PEDOT:PSS를 무기물 GaN 위에 spin coating 하여 두께에 다른 효율을 측정하였다. 유기물 MDMO-PPV는 p-형으로 클로로벤젠, 톨루엔과 같은 유기 용매에 잘 녹으며 HOMO 5.33eV, LUMO 2.97eV, energy band gap 2.4eV이며 99.5%의 순도 물질을 사용하였다. 또한 정공 수송층(hole transport layer, HTL)으로 PEDOT:PSS를 사용하였으며, HOMO 5.0eV, LUMO 3.6eV, energy band gap 1.4eV를 가지며 증류수나 에탄올과 같은 수용성 용매에 잘 녹는 특성을 가지고 있다. 무기물은 III-V 족 물질 n-GaN(002)을 사용하였고 valence band energy 1.9eV, conduction band energy 6.3eV, energy band gap 3.4eV, 높은 전자 이동도와 높은 포화 속도, 광전자 소자에 유리한 광 전기적 특성을 가지고 있다. 기판으로는 GaN와 격자 부정합도와 열팽창계수 부정합도가 큰 Sapphire (Al2O3) 이종 기판을 사용하였다. 전극으로 Au를 사용하였으며 E-beam증착하였다. Reflector로서 Al를 thermal evaporator로 증착하였다 [3]. 실험 과정은 두께에 따른 효율을 알아보기 위해 MDMO-PPV를 900~1,500 rpm으로 spin coating 하였고, 열처리에 따른 효율을 알아보기 위해 열처리 온도 조건을 $110{\sim}170^{\circ}C$의 변화를 주었다. FE-SEM으로 표면과 단면을 관찰하였으며 J-V 특성을 알아보기 위해 각 샘플마다 solar simulator를 사용하여 측정하였고 그 결과를 논의하였다.
Park, Sung-Yul L.;Kim, Hee Won;Kim, Sang Duk;Kim, Jong Hwan;Kim, Bum Sung;Lee, Don Hee
한국신재생에너지학회:학술대회논문집
/
2010.06a
/
pp.72.1-72.1
/
2010
Thin film a-Si solar cells deposited by PECVD have many advantages compared to the traditional crystalline Si solar cells. They do not require expensive Si wafer, the process temperature is relatively low, possibility of scaling up for mass production, etc. In order to produce thin film solar cells, understanding the relationship between the material characteristics and deposition conditions is important. It has been reported by many groups that the band gap of the a-Si material and the deposition rate has an linear relationship, when RF power is used to control both. However, when the process pressure is changed in order to control the deposition rate and the band gap, a diversion from the well known linear relationship occurs. Here, we explain this diversion by the deposition condition crossing different plasma regions in the Paschen curve with a simple model. This model will become a guide to which condition a-Si thin films must be fabricated in order to get a high quality film.
Journal of the Korean Institute of Telematics and Electronics
/
v.25
no.4
/
pp.402-406
/
1988
The MgGa2Se4 single crystal for study of optical properties is for the first time grown by Bridgmna method. The crystal structure of grown MgGa2Se4 single crystal has the Rhomobohedral structure (R3m) and its lattice constant are a=3.950\ulcorner c=38.893\ulcornerin Hexagonal structure. The energy band structure of grown MgGa2Se4 single crystal structure has direct band gap and the optical energy gap measured from optical absorption in this crystal is 2.20eV at 290K. The temperature dependence of energy gap was given Eg(T)=Eg(O)-aT\ulcorner)B+T), from varshni equation, where Eg(O)=2.34eV, a=8.79x10**-4eV/and b=250K.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2003.07a
/
pp.347-351
/
2003
A p-$CdIn_2Te_4$ single crystal has been grown by the Bridgman method without a seed crystal in a tree-stage vertical electric furnace. From photocurrent measurements, it was found that three peaks, A, B, and C, corresponded to an intrinsic transition due to the band-to-band transition from the valence band states ${\Gamma}_7(A),\;{\Gamma}_6(B),\;and\;{\Gamma}_7(C)$ to the conduction band state ${\Gamma}_6$, respectively. Also, the valence band splitting of the $CdIn_2Te_4$ crystal has been confirmed by photocurrent spectroscopy. The crystal field splitting and the spin orbit splitting were obtained to be 0.2360 and 0.1119 eV, respectively. Also, the temperature dependence of the band gap energy of the $CdIn_2Te_4$ crystal has been driven as the following equation of $E_g(T)\;=E_g(0)\;-\;(9.43\;{\times}\;10^{-3})T^2/(2676\;+\;T)$. In this equation, the Eg(0) was estimated to be 1.4750, 1.7110, and 1.8229 eV at the valence band state A, B, and C, respectively. The band gap energy of the p-$CdIn_2Te_4$ at room temperature was determined to be 1.2023 eV.
We analysed perovskite $CH_3NH_3PbI_{3-x}Cl_x$ inverted planer structure solar cell with nickel oxide (NiO) and spiroMeOTAD as hole conductors. This structure is free from electron transport layer. The thickness is optimized for NiO and spiro-MeOTAD hole conducting materials and the devices do not exhibit any significant variation for both hole transport materials. The back metal contact work function is varied for NiO hole conductor and observed that Ni and Co metals may be suitable back contacts for efficient carrier dynamics. The solar photovoltaic response showed a linear decrease in efficiency with increasing temperature. The electron affinity and band gap of transparent conducting oxide and NiO layers are varied to understand their impact on conduction and valence band offsets. A range of suitable band gap and electron affinity values are found essential for efficient device performance.
Kim, Hyung-Gon;Kim, Byung-Chul;Bang, Tae-Hwan;Hyun, Seung-Cheol;Kim, Duck-Tae;Son, Gyeong-Chun
Proceedings of the KIEE Conference
/
2000.07e
/
pp.56-59
/
2000
$CdGaInS_4$ and $CdGaInS_4:Er^{3+}$ single crystals crystallized in the rhombohedral(hexagonal) structure. with lattice constants $a=3.913{\AA},\;c=37.245{\AA}$ for $CdGaInS_4$, and $a=3.899{\AA}$ and $c=36.970{\AA}$ for $CdGaInS_4:Er^{3+}$. The optical absorption measured near the fundamental band edge showed that the optical energy band structure of these compounds had a direct and indirect band gap. the direct and indirect energy gaps are found to be 2.771 and 2.503 eV for $CdGaInS_4$, and 2.665 and 2.479 eV for $CdGaInS_4:Er^{3+}$ at 10 K. The temperature dependence of the optical energy gap was well represented by the Varshni equation. In $CdGaInS_4$, the values of ${\alpha},\;{\beta}$ of the direct and the indirect energy gap were found to be $7.57{\times}10^{-4}eV/K$. $6.53{\times}10^{-4}eV/K$ and 240K. 197K. and the values of ${\alpha}$ and ${\beta}$ of the direct and the indirect energy gap in the $CdGaInS_4:Er^{3+}$ were given by $8.28{\times}10^{-4}eV/K,\;2.08{\times}10^{-4}eV/K$ and 425 K, 283 K, respectively.
Journal of the Microelectronics and Packaging Society
/
v.12
no.1
s.34
/
pp.73-76
/
2005
To widen the band gap of ZnO, we have investigated $Zn_{1-x}Mg_xO(ZMO)$ thin films prepared by pulsed laser deposition on c-plane sapphire substrates at $500^{\circ}C$. From X-ray diffraction patterns, ZMO films show only the (0002) and (0004) diffraction peaks. It means that the flints have the wurtzite structure. Segregation of ZnO and MgO phases is found in the films with x=0.59. All the samples are highly transparent in the visible region and have a sharp absorption edge in the UV region. The shift of absorption edge to higher energy is observed in the films with higher Mg composition. The excitonic nature of the films is clearly appeared in the spectra for all alloy compositions. The optical band-gap ($E_g$) of ZMO films is obtained from the ${\alpha}^2$ vs Photon energy plot assuming ${\alpha}^2\;\propto$ (hv - $E_g$), where u is the absorption coefficient and hv is the photon energy. The value of $E_g$ increases up to 3.72 eV for the films with x=0.35. It is important to adjust Mg composition control for controlling the band-gap of ZMO films.
Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
/
2007.06a
/
pp.121-122
/
2007
Single crystal $CuAlSe_2$ layers were grown on thoroughly etched sem-insulating GaAs(l00) substrate at $410^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $CuAlSe_2$ source at $680^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $CuAlSe_2$ thin films measured with Hall effect by van der Pauw method are $9.24{\times}l0^{16}\;cm^{-3}$ and $295\;cm^2/V{\cdot}s$ at 293K, respectively. The temperature dependence of the energy band gap of the $CuAlSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)\;=\;2.8382\;eV\;-\;(8.68\;{\times}\;10^{-4}\;eV/K)T^2/(T\;+\;155\;K)$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.