• 제목/요약/키워드: energy balanced consumption

검색결과 108건 처리시간 0.025초

Optimized Energy Cluster Routing for Energy Balanced Consumption in Low-cost Sensor Network

  • Han, Dae-Man;Koo, Yong-Wan;Lim, Jae-Hyun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권6호
    • /
    • pp.1133-1151
    • /
    • 2010
  • Energy balanced consumption routing is based on assumption that the nodes consume energy both in transmitting and receiving. Lopsided energy consumption is an intrinsic problem in low-cost sensor networks characterized by multihop routing and in many traffic overhead pattern networks, and this irregular energy dissipation can significantly reduce network lifetime. In this paper, we study the problem of maximizing network lifetime through balancing energy consumption for uniformly deployed low-cost sensor networks. We formulate the energy consumption balancing problem as an optimal balancing data transmitting problem by combining the ideas of corona cluster based network division and optimized transmitting state routing strategy together with data transmission. We propose a localized cluster based routing scheme that guarantees balanced energy consumption among clusters within each corona. We develop a new energy cluster based routing protocol called "OECR". We design an offline centralized algorithm with time complexity O (log n) (n is the number of clusters) to solve the transmitting data distribution problem aimed at energy balancing consumption among nodes in different cluster. An approach for computing the optimal number of clusters to maximize the network lifetime is also presented. Based on the mathematical model, an optimized energy cluster routing (OECR) is designed and the solution for extending OEDR to low-cost sensor networks is also presented. Simulation results demonstrate that the proposed routing scheme significantly outperforms conventional energy routing schemes in terms of network lifetime.

Efficient Cluster Radius and Transmission Ranges in Corona-based Wireless Sensor Networks

  • Lai, Wei Kuang;Fan, Chung-Shuo;Shieh, Chin-Shiuh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권4호
    • /
    • pp.1237-1255
    • /
    • 2014
  • In wireless sensor networks (WSNs), hierarchical clustering is an efficient approach for lower energy consumption and extended network lifetime. In cluster-based multi-hop communications, a cluster head (CH) closer to the sink is loaded heavier than those CHs farther away from the sink. In order to balance the energy consumption among CHs, we development a novel cluster-based routing protocol for corona-structured wireless sensor networks. Based on the relaying traffic of each CH conveys, adequate radius for each corona can be determined through nearly balanced energy depletion analysis, which leads to balanced energy consumption among CHs. Simulation results demonstrate that our clustering approach effectively improves the network lifetime, residual energy and reduces the number of CH rotations in comparison with the MLCRA protocols.

이동 Ad Hoc 네트워크에서 Threshold-Tuning을 통한 균형적인 에너지 소모 알고리즘 (A Balanced Energy Consumption Algorithm by Threshold-Tuning for Mobile Ad Hoc Networks)

  • 장재호;장주욱
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (C)
    • /
    • pp.403-405
    • /
    • 2003
  • Ad Hoc 네트워크에서 Threshold-Tuning을 통한 노드들간의 균형적인 에너지 소모를 위한 알고리즘 (BECT : A Balanced Energy Consumption Algorithm by Threshold-Tuning)을 제안한다. BECT는 노드간 에너지 균형을 맞추어 네트워크의 수명 (Network Lifetime)을 연장한다. 제안한 알고리즘은 DSR (Dynamic Source Routing) 프로토콜을 기반으로 구현하였으며, GloMoSim 2.0을 이용하여 실험을 하였다. 실험 결과 BECT가 실험 토폴로지에 따라 DSR의 에너지 균형을 17-31% 향상시키며, 데이터 전송율이나 제어 패킷 비율에 있어서도 향상된 성능을 보여준다.

  • PDF

분산 무선센서 네트워크의 클러스터-기반 에너지 소비 균형 라우팅 프로토콜 (A Cluster-based Routing Protocol with Energy Consumption Balance in Distributed Wireless Sensor Networks)

  • 김태효;주연정;오호석;김민규;정용배
    • 융합신호처리학회논문지
    • /
    • 제15권4호
    • /
    • pp.155-161
    • /
    • 2014
  • 본 논문에서는 비교적 밀도가 높게 전개되는 무선 센서네트워크에서 센서노드들의 에너지를 균형있게 소비할 수 있는 클러스터-기반 에너지 소비 균형을 위한 라우팅 프로토콜을 제안하였다. 본 프로토콜은 계층적 구조를 가지는 클러스터-기반으로 구현된다. 클러스터는 위치적으로 가까운 거리에 있는 센서노드들로 형성되며, 해당 클러스터 멤버들 중에서 잔류 에너지가 가장 높은 노드가 헤드노드로 선정된다. 경로 선정에서, 이웃하는 클러스터와 통신의 범위가 중첩되게 하여 그 공통영역 내에 있는 하나의 노드를 중계노드로 선택하여, 통신에너지 소비의 균형을 고려하여 노드들의 수명을 연장할 수 있게 하였다.

EBKCCA: A Novel Energy Balanced k-Coverage Control Algorithm Based on Probability Model in Wireless Sensor Networks

  • Sun, Zeyu;Zhang, Yongsheng;Xing, Xiaofei;Song, Houbing;Wang, Huihui;Cao, Yangjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권8호
    • /
    • pp.3621-3640
    • /
    • 2016
  • In the process of k-coverage of the target node, there will be a lot of data redundancy forcing the phenomenon of congestion which reduces network communication capability and coverage, and accelerates network energy consumption. Therefore, this paper proposes a novel energy balanced k-coverage control algorithm based on probability model (EBKCCA). The algorithm constructs the coverage network model by using the positional relationship between the nodes. By analyzing the network model, the coverage expected value of nodes and the minimum number of nodes in the monitoring area are given. In terms of energy consumption, this paper gives the proportion of energy conversion functions between working nodes and neighboring nodes. By using the function proportional to schedule low energy nodes, we achieve the energy balance of the whole network and optimizing network resources. The last simulation experiments indicate that this algorithm can not only improve the quality of network coverage, but also completely inhibit the rapid energy consumption of node, and extend the network lifetime.

무선 ad-hoc 네트워크 환경에서 균형화된 에너지 소비를 위한 효율적인 라우팅 알고리즘 (An Efficient Routing Algorithm for Balanced Energy Consumption in Wireless Ad-hoc Network Environments)

  • 김현호;김정희;강용혁;엄영익
    • 한국통신학회논문지
    • /
    • 제31권11A호
    • /
    • pp.1120-1129
    • /
    • 2006
  • 무선 ad-hoc 네트워크 환경에서 이동 호스트의 배터리 수명을 최대화하는 것은 시스템의 수명과 성능을 향상시키므로 매우 중요하다. 이동 호스트들은 라우팅 역할을 수행하므로 네트워크의 구조와 이동 호스트들의 위치에 따라 이동 호스트들의 에너지 소비의 차이가 발생된다. 본 논문에서 각 이동 호스트는 에너지 트리를 유지하며, 메시지 트리 패킷을 이용하여 이웃 이동 호스트들의 에너지의 양을 주기적으로 파악한다. 이동 호스트는 패킷을 전송하기 위한 라우팅 경로를 설정할 때 에너지 트리와 너비우선 탐색을 이용하여 에너지 소비가 가장 적절한 경로를 선택한다. 제안기법은 무선 ad-hoc 네트워크 환경에서 각 이동 호스트의 에너지의 양이 균등하게 사용됨으로써 제한된 배터리 용량을 가진 이동 호스트들이 최대한 오랫동안 동작하므로 시스템의 수명과 성능을 향상시킨다.

MAP : A Balanced Energy Consumption Routing Protocol for Wireless Sensor Networks

  • Azim, Mohamed Mostafa A.
    • Journal of Information Processing Systems
    • /
    • 제6권3호
    • /
    • pp.295-306
    • /
    • 2010
  • Network lifetime is a critical issue in Wireless Sensor Networks (WSNs). In which, a large number of sensor nodes communicate together to perform a predetermined sensing task. In such networks, the network life time depends mainly on the lifetime of the sensor nodes constituting the network. Therefore, it is essential to balance the energy consumption among all sensor nodes to ensure the network connectivity. In this paper, we propose an energy-efficient data routing protocol for wireless sensor networks. Contrary to the protocol proposed in [6], that always selects the path with minimum hop count to the base station, our proposed routing protocol may choose a longer path that will provide better distribution of the energy consumption among the sensor nodes. Simulation results indicate clearly that compared to the routing protocol proposed in [6], our proposed protocol evenly distributes the energy consumption among the network nodes thus maximizing the network life time.

Energy-Efficient Routing Protocol for Wireless Sensor Networks Based on Improved Grey Wolf Optimizer

  • Zhao, Xiaoqiang;Zhu, Hui;Aleksic, Slavisa;Gao, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권6호
    • /
    • pp.2644-2657
    • /
    • 2018
  • To utilize the energy of sensor nodes efficiently and extend the network lifetime maximally is one of the primary goals in wireless sensor networks (WSNs). Thus, designing an energy-efficient protocol to optimize the determination of cluster heads (CHs) in WSNs has become increasingly important. In this paper, we propose a novel energy-efficient protocol based on an improved Grey Wolf Optimizer (GWO), which we refer to as Fitness value based Improved GWO (FIGWO). It considers a fitness value to improve the finding of the optimal solution in GWO, which ensures a better distribution of CHs and a more balanced cluster structure. According to the distance to the CHs and the BS, sensor nodes' transmission distance are recalculated to reduce the energy consumption. Simulation results demonstrate that the proposed approach can prolong the stability period of the network in comparison to other algorithms, namely by 31.5% in comparison to SEP, and even by 57.8% when compared with LEACH protocol. The results also show that the proposed protocol performs well over the above comparative protocols in terms of energy consumption and network throughput.

Quantifying Energy Consumption to the Level of Service Pressure in Water Distribution Network

  • Marlim, Malvin S.;Choi, Jeongwook;Kang, Doosun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.458-458
    • /
    • 2022
  • It is essential to reduce global carbon emissions, mainly from energy use. The water supply and distribution sector is a vital part of human society and is one of the primary energy consumers. The procurement and distribution of water require electricity to operate the pump to deliver water to users with sufficient pressure. As the water users are spatially distributed over a wide area, the energy required to deliver water to each user differs depending on the corresponding supplying element (reservoir, tank, pipe, pump, and valve). This difference in energy required for each user also comes with a difference in pressure availability which affects the level of service for individual users and the whole network. Typically, there is a disproportion where users close to the source experience excessively high pressure with low energy consumption. In contrast, remote users need more energy to get the minimum pressure. This study proposes the Energy Return Index (ERI) to quantify the pressure return from particular energy consumption to supply water to each node. The disproportionality can be quantified and identified in the network using the proposed ERI. The index can be applied to optimize the network elements such as pump operation and tank location/size to reach a balanced energy consumption with the appropriate level of service.

  • PDF

A many-objective optimization WSN energy balance model

  • Wu, Di;Geng, Shaojin;Cai, Xingjuan;Zhang, Guoyou;Xue, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.514-537
    • /
    • 2020
  • Wireless sensor network (WSN) is a distributed network composed of many sensory nodes. It is precisely due to the clustering unevenness and cluster head election randomness that the energy consumption of WSN is excessive. Therefore, a many-objective optimization WSN energy balance model is proposed for the first time in the clustering stage of LEACH protocol. The four objective is considered that the cluster distance, the sink node distance, the overall energy consumption of the network and the network energy consumption balance to select the cluster head, which to better balance the energy consumption of the WSN network and extend the network lifetime. A many-objective optimization algorithm to optimize the model (LEACH-ABF) is designed, which combines adaptive balanced function strategy with penalty-based boundary selection intersection strategy to optimize the clustering method of LEACH. The experimental results show that LEACH-ABF can balance network energy consumption effectively and extend the network lifetime when compared with other algorithms.