• Title/Summary/Keyword: energetic electrons and protons

Search Result 7, Processing Time 0.023 seconds

Energetic Electron and Proton Interactions with Pc5 Ultra Low Frequency (ULF) Waves during the Great Geomagnetic Storm of 15-16 July 2000

  • Lee, Eunah;Mann, Ian R.;Ozeke, Louis G.
    • Journal of Astronomy and Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.145-158
    • /
    • 2022
  • The dynamics of the outer zone radiation belt has received a lot of attention mainly due to the correlation between the occurrence of enhancing relativistic electron flux and spacecraft operation anomalies or even failures (e.g., Baker et al. 1994). Relativistic electron events are often observed during great storms associated with ultra low frequency (ULF) waves. For example, a large buildup of relativistic electrons was observed during the great storm of March 24, 1991 (e.g., Li et al. 1993; Hudson et al. 1995; Mann et al. 2013). However, the dominant processes which accelerate magnetospheric radiation belt electrons to MeV energies are not well understood. In this paper, we present observations of Pc5 ULF waves in the recovery phase of the Bastille day storm of July 16, 2000 and electron and proton flux simultaneously oscillating with the same frequencies as the waves. The mechanism for the observed electron and proton flux modulations is examined using ground-based and satellite observations. During this storm time, multiple packets of discrete frequency Pc5 ULF waves appeared associated with energetic particle flux oscillations. We model the drift paths of electrons and protons to determine if the particles drift through the ULF wave to understand why some particle fluxes are modulated by the ULF waves and others are not. We also analyze the flux oscillations of electrons and protons as a function of energy to determine if the particle modulations are caused by a ULF wave drift resonance or advection of a particle density gradient. We suggest that the energetic electron and proton modulations by Pc5 ULF waves provide further evidence in support of the important role that ULF waves play in outer radiation belt dyanamics during storm times.

How the Sun generates "killer electrons" in near-Earth space

  • Lee, Dae-Young
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.29-29
    • /
    • 2014
  • A fundamental problem in space physics is to explain the origin of energetic charged particles in space close to the Earth and the significant temporal variations of their flux. The particles are primarily electrons and protons although energetic heavy ions such as O+ are sometimes non-negligible. By "energetic" we mean a rather broad energy range of particles from a few tens of keV to well above MeV. Drastic variations of the particle fluxes (by >3 orders of magnitude) occur over both a short time scale like a few minutes and a long time scale like the 11-year sunspot cycle. In this talk I will focus on relativistic energy electrons (~MeV) trapped within the Earth's magnetosphere. They are a primary element of the space weather since they can cause damage to satellites, so often called "killer electrons". Considering that the source particles in both the solar wind and the ionosphere are relatively cold (~eV), the quasi-permanent existence of these very energetic particles close to the Earth has been a surprise to space physicists for decades. Complex electromagnetic processes such as wave-particle interactions within the magnetosphere are believed to play a major role in generating these killer electrons. While detailed physics remains an active research area, for this lecture I will introduce a synthesized picture of how solar activities are related to wave-particle interaction physics inside the magnetosphere. This can be applied to other astrophysical systems.

  • PDF

Effects of the Micro-hole Target Structures on the Laser-driven Energetic Proton Generation

  • Pae, Ki-Hong;Choi, Il-Woo;Hahn, Sang-June;Lee, Jong-Min
    • Journal of the Optical Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.48-52
    • /
    • 2009
  • Micro-hole targets are studied to generate energetic protons from laser-thin foil targets by using 2-dimensional particle-in-cell simulations. By using a small hole, the maximum energy of the accelerated proton is increased to 4 times higher than that from a simple planar target. The main proton acceleration mechanism of the hole-targets is the electrostatic field created between the fast electrons accelerated by the laser pulse ponderomotive force combined with the vacuum heating and the target rear surface. But in this case, the proton angular distribution shows double-peak shape, which means poor collimation and low current density. By using a small cone-shaped hole, the maximum proton energy is increased 3 times higher than that from a simple planar target. Furthermore, the angular distribution of the accelerated protons shows good collimation.

Construction of Korean Space Weather Prediction Center: Space radiation effect

  • Lee, Jae-Jin;Cho, Kyung-Suk;Hwang, Jung-A;Kwak, Young-Sil;Kim, Khan-Hyuk;Bong, Su-Chan;Kim, Yeon-Han;Park, Young-Deuk;Choi, Seong-Hwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.33.3-34
    • /
    • 2008
  • As an activity of building Korean Space Weather Prediction Center (KSWPC), we has studied of radiation effect on the spacecraft components. High energy charged particles trapped by geomagnetic field in the region named Van Allen Belt can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-1) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-1 orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-1 solar cell degradation was caused by energetic protons which energy is about 700 keV to 1.5 MeV. Our result can be applied to estimate solar cell conditions of other satellites.

  • PDF

Space Physics Sensor on KOMPSAT-1

  • Min, Kyoung-Wook;Choi, Young-Wan;Shin, Young-Hoon;Lee, Jae-Jin;Lee, Dae-Hee;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.355-360
    • /
    • 1998
  • A small package of plasma instruments, Space Physics Sensor, will monitor the space environment and its effects on microelectronics in the low altitude region as it operates on board the KOMPSAT-1 from 1999 over the maximum of the solar cycle 23. The Space Physics Sensor (SPS) consists of two parts: the Ionospheric Measurement Sensor (IMS) and the High Energy Particle Detector (HEPD). IMS will make in situ Measurements of the thermal electron density and temperature, and is expected to provide a global map of the thermal electron characteristics and the variability according to the solar and geomagnetic activity in the high altitude ionosphere of the KOMPSAT-t orbit. HEPD will measure the fluxes of high energy protons and electrons, monitor the single event upsets caused by these energetic charged particles, and give the information of the total radiation dose received by the spacecraft. The continuous operation of these sensors, along with the ground measurements such as incoherent scatter radars, digital ionosondes and other spacecraft measurements, will enhance our understanding of this important region of practical use for the low earth orbit satellites.

  • PDF

Calibration of TEPC for CubeSat Experiment to Measure Space Radiation

  • Nam, Uk-Won;Park, Won-Kee;Lee, Jaejin;Pyo, Jeonghyun;Moon, Bong-Kon;Lee, Dae-Hee;Kim, Sunghwan;Jin, Ho;Lee, Seongwhan;Kim, Jungho;Kitamura, Hisashi;Uchihori, Yukio
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.145-149
    • /
    • 2015
  • A newly designed Tissue Equivalent Proportional Counter (TEPC) has been developed for the CubeSat mission, SIGMA (Scientific cubesat with Instruments for Global Magnetic field and rAdiation) to investigate space radiation. In order to test the performance of the TEPC, we have performed heavy ion beam experiments with the Heavy Ion Medical Accelerator in Chiba (HIMAC), Japan. In space, human cells can be exposed to complex radiation sources, such as X-ray, Gamma ray, energetic electrons, protons, neutrons and heavy charged particles in a huge range of energies. These generate much a larger range of Linear Energy Transfer (LET) than on the ground and cause unexpected effects on human cells. In order to measure a large range of LET, from 0.3 to $1,000keV/{\mu}m$, we developed a compact TEPC which measures ionized particles produced by collisions between radiation sources and tissue equivalent materials in the detector. By measuring LET spectra, we can easily derive the equivalent dose from the complicated space radiation field. In this HIMAC experiment, we successfully obtained the linearity response for the TEPC with Fe 500 MeV/u and C 290 MeV/u beams and demonstrated the performance of the active radiation detector.

Space Radiation Effect on Si Solar Cells (우주 방사능에 의한 실리콘 태양 전지의 특성 변화)

  • Lee, Jae-Jin;Kwak, Young-Sil;Hwang, Jung-A;Bong, Su-Chang;Cho, Kyung-Seok;Jeong, Seong-In;Kim, Kyung-Hee;Choi, Han-Woo;Han, Young-Hwan;Choi, Yong-Woon;Seong, Baek-Il
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.435-444
    • /
    • 2008
  • High energy charged particles are trapped by geomagnetic field in the region named Van Allen Belt. These particles can move to low altitude along magnetic field and threaten even low altitude spacecraft. Space Radiation can cause equipment failures and on occasions can even destroy operations of satellites in orbit. Sun sensors aboard Science and Technology Satellite (STSAT-l) was designed to detect sun light with silicon solar cells which performance was degraded during satellite operation. In this study, we try to identify which particle contribute to the solar cell degradation with ground based radiation facilities. We measured the short circuit current after bombarding electrons and protons on the solar cells same as STSAT-1 sun sensors. Also we estimated particle flux on the STSAT-l orbit with analyzing NOAA POES particle data. Our result clearly shows STSAT-l solar cell degradation was caused by energetic protons which energy is about 700keV to 1.5MeV. Our result can be applied to estimate solar cell conditions of other satellites.