• 제목/요약/키워드: endothelial cell function

검색결과 115건 처리시간 0.025초

Graphene-matrix nanotopography as a biomimetic scaffold for engineering structure and function of stem cells

  • 박선호;김장호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2017년도 춘계학술대회 논문집
    • /
    • pp.82-82
    • /
    • 2017
  • It is a great challenge to design and develop biologically inspired hierarchical platforms composed of nano and sub-nanopatterned topography for cell and tissue engineering. In this work, we have developed the novel platforms as a synthetic extracellular matrix using graphene and nanopatterned substrates for promoting functions of cells. Monolayer graphene was coated on the nanopatterned matrix with various nanoscale parallel ridges and grooves as scaffolds with hierarchical structures. Strictly, it was found that graphene-matrix nanotopography platforms could promote the functions of cells including stem cells, osteoblast cells, and endothelial cells through the synergically controlled cell-substrate and cell-cell interactions. Our results proposed that the graphene-based nanopatterned scaffolds would allow us to set up an efficient strategy for designing advanced biomimetic engineering systems toward stem cell-based tissue regeneration.

  • PDF

Novel Anti-Angiogenic and Anti-Tumour Activities of the N-Terminal Domain of NOEY2 via Binding to VEGFR-2 in Ovarian Cancer

  • Rho, Seung Bae;Lee, Keun Woo;Lee, Seung-Hoon;Byun, Hyun Jung;Kim, Boh-Ram;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제29권5호
    • /
    • pp.506-518
    • /
    • 2021
  • The imprinted tumour suppressor NOEY2 is downregulated in various cancer types, including ovarian cancers. Recent data suggest that NOEY2 plays an essential role in regulating the cell cycle, angiogenesis and autophagy in tumorigenesis. However, its detailed molecular function and mechanisms in ovarian tumours remain unclear. In this report, we initially demonstrated the inhibitory effect of NOEY2 on tumour growth by utilising a xenograft tumour model. NOEY2 attenuated the cell growth approximately fourfold and significantly reduced tumour vascularity. NOEY2 inhibited the phosphorylation of the signalling components downstream of phosphatidylinositol-3'-kinase (PI3K), including phosphoinositide-dependent protein kinase 1 (PDK-1), tuberous sclerosis complex 2 (TSC-2) and p70 ribosomal protein S6 kinase (p70S6K), during ovarian tumour progression via direct binding to vascular endothelial growth factor receptor-2 (VEGFR-2). Particularly, the N-terminal domain of NOEY2 (NOEY2-N) had a potent anti-angiogenic activity and dramatically downregulated VEGF and hypoxia-inducible factor-1α (HIF-1α), key regulators of angiogenesis. Since no X-ray or nuclear magnetic resonance structures is available for NOEY2, we constructed the three-dimensional structure of this protein via molecular modelling methods, such as homology modelling and molecular dynamic simulations. Thereby, Lys15 and Arg16 appeared as key residues in the N-terminal domain. We also found that NOEY2-N acts as a potent inhibitor of tumorigenesis and angiogenesis. These findings provide convincing evidence that NOEY2-N regulates endothelial cell function and angiogenesis by interrupting the VEGFR-2/PDK-1/GSK-3β signal transduction and thus strongly suggest that NOEY2-N might serve as a novel anti-tumour and anti-angiogenic agent against many diseases, including ovarian cancer.

Involvement of Protein Kinase C-δ in Vascular Permeability in Acute Lung Injury

  • Ahn, Jong J.;Jung, Jong P.;Park, Soon E.;Lee, Minhyun;Kwon, Byungsuk;Cho, Hong R.
    • IMMUNE NETWORK
    • /
    • 제15권4호
    • /
    • pp.206-211
    • /
    • 2015
  • Pulmonary edema is a major cause of mortality due to acute lung injury (ALI). The involvement of protein kinase C-${\delta}$ (PKC-${\delta}$) in ALI has been a controversial topic. Here we investigated PKC-${\delta}$ function in ALI using PKC-${\delta}$ knockout (KO) mice and PKC inhibitors. Our results indicated that although the ability to produce proinflammatory mediators in response to LPS injury in PKC-${\delta}$ KO mice was similar to that of control mice, they showed enhanced recruitment of neutrophils to the lung and more severe pulmonary edema. PKC-${\delta}$ inhibition promoted barrier dysfunction in an endothelial cell layer in vitro, and administration of a PKC-${\delta}$-specific inhibitor significantly increased steady state vascular permeability. A neutrophil transmigration assay indicated that the PKC-${\delta}$ inhibition increased neutrophil transmigration through an endothelial monolayer. This suggests that PKC-${\delta}$ inhibition induces structural changes in endothelial cells, allowing extravasation of proteins and neutrophils.

A Synthetic Analog of Resveratrol Inhibits the Proangiogenic Response of Liver Sinusoidal Cells during Hepatic Metastasis

  • Olaso, Elvira;Benedicto, Aitor;Lopategi, Aritz;Cossio, Fernando P.;Arteta, Beatriz
    • Biomolecules & Therapeutics
    • /
    • 제30권2호
    • /
    • pp.162-169
    • /
    • 2022
  • We utilized Fas21, a resveratrol analog, to modulate the function of hepatic stellate cells (HSCs) and liver sinusoidal endothelial cells (LSECs) during the angiogenic phase of murine liver metastasis by B16 melanoma and 51b colorectal carcinoma. Preangiogenic micrometastases were treated with Fas21 (1 mg/kg/day) or vehicle during the development of intra-angiogenic tracts. Mice treated with Fas21 showed reduced liver tumor foci in both liver metastasis models. Micrometastases were classified immunohistochemically, as well as according to their position coordinates and connection to local microvasculature. The volume of liver occupied by sinusoidal-type foci, containing infiltrating angiogenic capillaries, decreased by ~50% in Fas21-treated mice compared to vehicle-treated ones in both tumor metastasis models. The volume of portal foci, containing peripheral neoangiogenesis within a discontinuous layer of myofibroblasts, was similar in all experimental groups in both tumor metastasis models, but displayed enhanced necrotic central areas devoid of angiogenesis following Fas21 treatment. As a result, sinusoidal tumors from mice treated with Fas21 showed a 50% reduction in desmin(+)/asma(+) HSCs and CD31(+) vessel density, and a 45% reduction in intrametastatic VEGF mRNA compared with sinusoidal tumors from vehicle-treated mice. Necrotic portal metastases increased 2-4-fold in treated mice. In vitro, Fas21 reduced VEGF secretion by HSCs and 51b cells dose-dependently. Additionally, HSCs migration in response to tumor soluble factors was dose-dependently diminished by Fas21, as was LSEC migration in response to HSCs and tumor soluble factors. Resveratrol analog Fas21 inhibits the proangiogenic response of HSCs and LSECs during the development of murine liver metastasis.

Tumor angiogenesis에 있어서 RLIP76의 중요성 (RalA-binding Protein 1 is an Important Regulator of Tumor Angiogenesis)

  • 이승형
    • 생명과학회지
    • /
    • 제24권5호
    • /
    • pp.588-593
    • /
    • 2014
  • 본 논문은 RLIP76 단백질이 암, 종양 혈관 신생 및 그 치료에 미치는 중요성을 보고함에 있다. 암의 연구에 있어서, 종양의 혈관 신생을 억제시키는 인자와 영향을 끼치는 인자를 밝혀내는 것은 암의 억제와 치료를 위한 분자 생물학적 기전에 중대한 영향을 미친다. 최근 연구에서, RLIP76 단백질이 혈관 신생에 영향을 끼치는 역할을 발견하였다. RLIP76 제거 마우스의 종양은 일반 종양과 비교하여 혈관의 크기가 작으며, 가늘고, 그 혈관의 수가 적고 길이가 짧은 것으로 보고되고 있다. 게다가, Matrigel plugs을 이용한 혈관 신생 실험에서, RLIP76이 제거된 마우스에서는 혈관 생성이 억제 되었으나, 일반 마우스에서는 혈관이 생성되었다. 또한, 혈관세포를 이용한 in vitro 실험에 있어서, proliferation, migration 및 cord formation 모두가 RLIP76에 의해서 조절되었다. 일반적으로 RLIP76은 대부분의 인간 조직과 종양에서 발현되며, 약의 저항 기전 연구에 이용되고 있기도 한다. 또한, 이RLIP76은 small GTPase R-Ras와 상호작용을 통하여 세포 spreading 및 migration에 관여하고 있다. 이러한 결과는 RLIP76와 암 연구의 중요성을 보고하고 있으며, 혈관 세포의 기능의 기전 및 종양의 혈관 신생을 위한 RLIP76 단백질의 중요성을 알리고 있고, RLIP76의 추가적인 연구를 통하여 종양의 혈관 신생의 기전을 밝히는 것이 필요함을 제안하는 바이다.

Hypoxia-dependent mitochondrial fission regulates endothelial progenitor cell migration, invasion, and tube formation

  • Kim, Da Yeon;Jung, Seok Yun;Kim, Yeon Ju;Kang, Songhwa;Park, Ji Hye;Ji, Seung Taek;Jang, Woong Bi;Lamichane, Shreekrishna;Lamichane, Babita Dahal;Chae, Young Chan;Lee, Dongjun;Chung, Joo Seop;Kwon, Sang-Mo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제22권2호
    • /
    • pp.203-213
    • /
    • 2018
  • Tumor undergo uncontrolled, excessive proliferation leads to hypoxic microenvironment. To fulfill their demand for nutrient, and oxygen, tumor angiogenesis is required. Endothelial progenitor cells (EPCs) have been known to the main source of angiogenesis because of their potential to differentiation into endothelial cells. Therefore, understanding the mechanism of EPC-mediated angiogenesis in hypoxia is critical for development of cancer therapy. Recently, mitochondrial dynamics has emerged as a critical mechanism for cellular function and differentiation under hypoxic conditions. However, the role of mitochondrial dynamics in hypoxia-induced angiogenesis remains to be elucidated. In this study, we demonstrated that hypoxia-induced mitochondrial fission accelerates EPCs bioactivities. We first investigated the effect of hypoxia on EPC-mediated angiogenesis. Cell migration, invasion, and tube formation was significantly increased under hypoxic conditions; expression of EPC surface markers was unchanged. And mitochondrial fission was induced by hypoxia time-dependent manner. We found that hypoxia-induced mitochondrial fission was triggered by dynamin-related protein Drp1, specifically, phosphorylated DRP1 at Ser637, a suppression marker for mitochondrial fission, was impaired in hypoxia time-dependent manner. To confirm the role of DRP1 in EPC-mediated angiogenesis, we analyzed cell bioactivities using Mdivi-1, a selective DRP1 inhibitor, and DRP1 siRNA. DRP1 silencing or Mdivi-1 treatment dramatically reduced cell migration, invasion, and tube formation in EPCs, but the expression of EPC surface markers was unchanged. In conclusion, we uncovered a novel role of mitochondrial fission in hypoxia-induced angiogenesis. Therefore, we suggest that specific modulation of DRP1-mediated mitochondrial dynamics may be a potential therapeutic strategy in EPC-mediated tumor angiogenesis.

Impaired Endothelium-Dependent Relaxation is Mediated by Reduced Production of Nitric Oxide in the Streptozotocin-Induced Diabetic Rats

  • Park, Kyoung-Sook;Kim, Cuk-Seong;Kang, Sang-Won;Park, Jin-Bong;Kim, Kwang-Jin;Chang, Seok-Jong;Jeon, Byeong-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.263-270
    • /
    • 2000
  • To evaluate the involvement of nitric oxide production on the endothelium-dependent relaxation in diabetes, we have measured vascular and endothelial function and nitric oxide concentration, and the expression level of endothelial nitric oxide synthase in the streptozotocin-induced diabetic rats. Diabetic rats were induced by the injection of streptozotocin (50 mg/kg i.v.) in the Sprague-Dawley rats. Vasoconstrictor responses to norepinephrine (NE) showed that maximal contraction to norepinephrine $(10^{-5}\;M)$ was significantly enhanced in the aorta of diabetic rats. Endothelium-dependent relaxation induced by acetylcholine was markedly impaired in the aorta of diabetic rats, these responses were little improved by the pretreatment with indomethacin. However, endothelium-independent relaxation induced by nitroprusside was not altered in the diabetic rats. Plasma nitrite and nitrate $(NO_2/_3)$ levels in diabetic rats were significantly lower than in non-diabetic rats. Western blot analysis using a monoclonal antibody against endothelial cell nitric oxide synthase (eNOS) revealed that the protein level was lower in the aorta of diabetic rats than in non-diabetic rats. These data indicate that nitric oxide formation and eNOS expression is reduced in diabetes, and this would, in part, account for the impaired endothelium-dependent relaxation in the aorta of streptozotocin-induced diabetic rats.

  • PDF

A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence

  • Dan Zhou;Ji Min Jang;Goowon Yang;Hae Chan Ha;Zhicheng Fu;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • 제31권6호
    • /
    • pp.629-639
    • /
    • 2023
  • Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

Effects of Geiji-Bokryung-Hwan on eNOS, nNOS, Caveolin-1 and bFGF Protein Expressions and the Endothelial Cells of the Corpus Cavernosum in Hypercholesterolemic Rat

  • Kim Jae-Woo;Son Soo-Gon;Sa Eun-Ho;Kim Cherl-Ho;Park Won-Hwan
    • 동의생리병리학회지
    • /
    • 제20권1호
    • /
    • pp.174-180
    • /
    • 2006
  • We examine the effect of Geiji-Bokryung-Hwan(GBH) on erectile function in a rat model of hypercholesterolemic erectile dysfunction. GBH, a drug preparation consisting of five herbs of Cinnamomi Ramulus (Geiji), Poria Cocos (Bokryun), Mountan Cortex Radicis (Mokdanpi), Paeoniae Radix (Jakyak), and Persicae Semen (Doin) is a traditional Korean herbal medicine that is widely used in the treatment of atherosclerosis-related disorders. In this study, 3-month-old Sprague-Dawley rats were used. The 6 rats control animals were fed a normal diet and the other 18 rats were fed 1% cholesterol diet for 3 months. After 1 months, GBH was added to the drinking water of the treatment group of 12 rats but not the cholesterol only group of 6 rats. Of the 12 rats 6 received 30 mg/kg per day (group 1) and 6 received 60 mg/kg per day (group 2) of GBH. At 3 months erectile function was evaluated with cavernous nerve electrostimulation in all animals. Penile tissues were collected for electron microscopy, and to perform Western blot for endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), basic fibroblast growth factor (bFGF) and caveolin-1. Systemic arterial pressure was not significantly different between the animals that were fed the 1% cholesterol diet and the controls. Conversely erectile function was not impaired in the herbal medicine treated rats. Electron microscopy showed many caveolae with fingerlike processes in the cavernous smooth muscle and endothelial cell membranes in control and treated rats but not in the cholesterol only group of rats. Western blot showed differences among groups in protein expression for eNOS, nNOS, caveolin-1 and bFGF protein expression in penile tissue. Increased eNOS and nNOS protein expressions dy high cholesterol diet were significantly decreased in group 1 and group 2. Interestingly, caveolin-1 and bFGF protein expression was significantly higher in groups 1 and 2 than in the cholesterol only and control groups.

암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이 (The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis)

  • 이한나;서채은;정미숙;장세복
    • 생명과학회지
    • /
    • 제34권2호
    • /
    • pp.128-137
    • /
    • 2024
  • 이 리뷰 논문에서는 혈관 투과성, 내피세포 모집, 종양관련 혈관 및 림프관의 유지 등에서 핵심적인 과정인 angiogenesis와 lymphangiogenesis에 있어서 vascular endothelial growth factors (VEGF)가 이행하는 중요한 역할에 대해 재조명하고자 한다. VEGF는 tyrosine-kinase receptor인 VEGFR-1, VEGFR-2, VEGFR-3를 통해 그 역할을 이행하며, 이러한 VEGF-VEGFR 시스템은 암에서뿐만 아니라 비정상적인 혈관 및 림프관 형성으로 인해 야기되는 다른 질병들에 있어서도 핵심적인 요소로 각광받고 있다. 암의 측면에서 보았을 때, VEGF와 그 수용체는 종양관련 혈관 및 림프관을 형성하는 과정에서 필수적이라는 점에서 치료적인 타겟으로 이목을 끌고 있다. 때문에 암세포의 성장을 방해하기 위한 항VEGF 항체, 수용체 길항체, 수용체 기능 억제제 등과 같은 여러 가지 시도들이 있었지만, 아직까지 그 임상효과가 불확실하며 더 많은 연구들이 필요한 실정이다. 이 논문에서는 VEGF의 생리적 역할을 VEGF-A, VEGF-B, VEGF-C, VEGF-D, PLGF에 따라 나누어 설명하면서 VEGF/VEGFR 시스템의 중요성을 강조한다. VEGFR-1과 VEGFR-3은 각각 angiogenesis와 lymphangiogenesis에 핵심적인 인자이며, VEGFR-2의 경우 두 가지 모두를 일으킨다. 전반적으로 이 리뷰는 현재까지 밝혀진 암을 포함한 다양한 질병에서의 VEGF와 VEGFR의 역할에 대해 상세히 설명하고자 하였다. 이를 통해 치료 표적으로서 VEGF와 VEGFR의 활용이 더욱 촉진될 것으로 기대된다.