• Title/Summary/Keyword: endothelial cell damage

Search Result 82, Processing Time 0.024 seconds

Image Analysis Algorithm for the Corneal Endothelium

  • Kim Young-Yoon;Kim Beop-Min;Park Hwa-Joon;Im Kang-Bin;Lee Jin-Su;Kim Dong-Youn
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.3
    • /
    • pp.125-130
    • /
    • 2006
  • The number of the living endothelial cells and the shape of those are very import clinical parameters for the evaluation of the quality of cornea. In this paper, we developed the automated endothelial cell counting and shape analysis algorithm for a confocal microscope. Since, the endothelial images from the confocal microscope has a non-uniform illumination and low contrast between cell boundaries and cell bodies, it is very difficult to segment the cells from the endothelial images. To cope with these difficulties, we proposed the new two stage image processing algorithm. At first stage algorithm, we used a high-pass filter and histogram equalization to compensate the non-uniform brightness pattern and a morphological filter and a watershed method are applied to detect the boundary of cells. From this stage, we could count the number of cells in an endothelial image. At second stage algorithm, we used a Voronoi diagram method to classify the shape of cells. This cell shape analysis and the percent of hexagonal cells are very sensitive in detecting the early endothelium damage. To evaluate the performance of the proposed system, we p개cessed seven endothelial images obtained using a confocal microscope. The proposed system correctly counted 95.5% cells and classified 92.0% of hexagonal cell shapes. This result is better than any others in this research area.

Development of Intravascular Micro Active Endoscope(I) -Analysis of Lubrication Characteristics of Small Arteries with Micro Catheter Insertion- (혈관 삽입형 초소형 작동형 내시경의 개발(I) - 도뇨관 삽입시 혈관 내부의 윤활 특성 분석 -)

  • 장준근;김중경
    • Tribology and Lubricants
    • /
    • v.15 no.3
    • /
    • pp.272-277
    • /
    • 1999
  • The objective of this investigation is to examine the influence of the micro catheters, which mimic the intravascular micro active endoscopes, on local pressure changes and flow rate in an arterial branch model similar to the femoral artery of human. The effects of branch to main lumen flow rate ratios and the locations of a catheter tip were found to be significant on the local pressure changes. Relatively large pressure drops and an increase in shear stress due to the obstruction effects may induce an endothelial cell damage and a change in arterial wall permeability, which have been reported to be the primary cause of the initiation of the atherosclerosis and other major vascular diseases.

Isolation and In Vitro Culture of Vascular Endothelial Cells from Mice

  • Choi, Shinkyu;Kim, Ji Aee;Kim, Kwan Chang;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • In cardiovascular disorders, understanding of endothelial cell (EC) function is essential to elucidate the disease mechanism. Although the mouse model has many advantages for in vivo and in vitro research, efficient procedures for the isolation and propagation of primary mouse EC have been problematic. We describe a high yield process for isolation and in vitro culture of primary EC from mouse arteries (aorta, braches of superior mesenteric artery, and cerebral arteries from the circle of Willis). Mouse arteries were carefully dissected without damage under a light microscope, and small pieces of the vessels were transferred on/in a Matrigel matrix enriched with endothelial growth supplement. Primary cells that proliferated in Matrigel were propagated in advanced DMEM with fetal calf serum or platelet-derived serum, EC growth supplement, and heparin. To improve the purity of the cell culture, we applied shearing stress and anti-fibroblast antibody. EC were characterized by a monolayer cobble stone appearance, positive staining with acetylated low density lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate, RT-PCR using primers for von-Willebrand factor, and determination of the protein level endothelial nitric oxide synthase. Our simple, efficient method would facilitate in vitro functional investigations of EC from mouse vessels.

Protective Effects of Jihwangeumja on Oxidative Stress-induced Injury of Human Umbilical Vein Endothelial Cells (혈관내피세포의 산화적 손상에 대한 지황음자의 방어기전 연구)

  • 정용준;장재호;이대용;이민구;전인철;정대영;이인;신선호;문병순
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.173-183
    • /
    • 2004
  • Objectives : Oxidative stress can induce negative responses such as growth inhibition or cell death by necrosis or apoptosis due to the intensity of the oxidative stress, as well as positive responses such as cellular proliferation or activation. We examined the effect of Jihwangeumja on this process. Methods and Results : We analyzed the influence of oxidative stress and agents that modify its effect in human umbilical vein endothelial cell (HUVEC). Oxidative stress was induced by $B_2O_2$. With induced oxidative stress the results obtained indicate that it has a harmful effect over cell function and viability, and that this effect is dose and time dependent. When oxidative stress increased, Jihwangeumja reduced cell damage and had protective functions. $B_2O_2$, induced the apoptosis of HUVEC through the activation of intrinsic caspases pathway as well as mitochondrial dysfunction. A significant increase in cell survival was observed in culture cells with oxidative stress when they were treated with Jihwangeumja. Conclusions : These results suggest that Jihwangeumja may be potentially useful to treat HUVEC against oxidative damages mediated by modulation of caspase protease and mitochondrial dysfunction.

  • PDF

Cirsium japonicum var. Maackii Extract Suppress VCAM-1 and ICAM-1 Expression in TNF-α-treated Human Vascular Endothelial Cells by Blocking NF-κB Activation (인간 혈관 내피세포에서 NF-κB 억제를 통한 엉겅퀴 추출물의 VCAM-1 및 ICAM-1 발현 억제효과)

  • Jae Young Shin;Byoung Ok Cho;Ji Hyeon Park;Eun Seo Kang;Jae Suk Sim;Dong Jun Sim;Seon Il Jang
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.21-26
    • /
    • 2023
  • Cirsium japonicum var. maackii is a traditional Korean wild perennial herb used to treat blood circulation, high blood pressure, inflammation, diabetes, and kidney damage. However, it is not known whether C. japonicum var. maackii directly improves endothelial dysfunction. In this study, the effect of C. japonicum var. maackii (CJE) on tumor necrosis factor (TNF)-α-induced vascular inflammation was investigated in vitro using human umbilical vein endothelial cells (HUVEC). As a result, CJE inhibited the production of VCAM-1, ICAM-1 and ROS increased by TNF-α in HUVECs. In addition, treatment with CJE attenuated IκB phosphorylation and translocation of NF-κB to the nucleus. These results suggest that CJE can suppress TNFα-induced adhesion molecule expression by blocking NF-κB signaling and inhibiting ROS generation. The results of this study show that CJE has the potential to be used to treat and prevent inflammation associated with endothelial cell damage.

Scanning Electron Microscopic Observation on Early Vascular Lesion in Rat Lung Administered with Monocrotaline (Monocrotaline을 투여한 백서 폐의 초기 혈관병변에 관한 주사전자현미경적 관찰)

  • Park, In-Ae;Ham, Eui-Keun
    • Applied Microscopy
    • /
    • v.21 no.1
    • /
    • pp.86-107
    • /
    • 1991
  • An experimental study was performed to observe the early effects of monocrotaline on pulmonary vascular system by means of light microscopy and scanning electron microscopy, attempting to expore the mechanism behind the process of pulmonary hypertension. Experimental animal(Sprague-Dawley male rats ; 150-200g B. W.) were intra-peritoneal administered with 100mg/kg B. W. monocrotaline. Authors observed light microscopically various gradational increase of wall thickness in pulmonary muscular and non-muscular arteries in duration from 2 weeks to 5 weeks after monocrotaline administration and the changes were more sever in the latter than the former. The scanning electron microscopy shows severe and diffuse endothelical cell swelling, microvilli and microbleb formation since 1 hour after monocrotaline administration and during the course, after 5 hours the severity of endothelial cell damage was prominent with presence of fibrin, webs, platelet thrombi and white cell adherence. It was concluded that the monocrotaline primarily induced severe and diffuse endothelial cell damage of pulmonary arteries and laterly added the participation of platelets, which attributed to the pathogenesis of monocrotaline induced pulmonary vascular lesions in relation to pulmonary hypertension.

  • PDF

Interferon-β alleviates sepsis by SIRT1-mediated blockage of endothelial glycocalyx shedding

  • Suhong Duan;Seung-Gook Kim;Hyung-Jin Lim;Hwa-Ryung Song;Myung-Kwan Han
    • BMB Reports
    • /
    • v.56 no.5
    • /
    • pp.314-319
    • /
    • 2023
  • Sepsis is a life-threatening multi-organ dysfunction with high mortality caused by the body's improper response to microbial infection. No new effective therapy has emerged that can adequately treat patients with sepsis. We previously demonstrated that interferon-β (IFN-β) protects against sepsis via sirtuin 1-(SIRT1)-mediated immunosuppression. Another study also reported its significant protective effect against acute respiratory distress syndrome, a complication of severe sepsis, in human patients. However, the IFN-β effect cannot solely be explained by SIRT1-mediated immunosuppression, since sepsis induces immunosuppression in patients. Here, we show that IFN-β, in combination with nicotinamide riboside (NR), alleviates sepsis by blocking endothelial damage via SIRT1 activation. IFN-β plus NR protected against cecal ligation puncture-(CLP)-induced sepsis in wild-type mice, but not in endothelial cell-specific Sirt1 knockout (EC-Sirt1 KO) mice. IFN-β upregulated SIRT1 protein expression in endothelial cells in a protein synthesis-independent manner. IFN-β plus NR reduced the CLP-induced increase in in vivo endothelial permeability in wild-type, but not EC-Sirt1 KO mice. IFN-β plus NR suppressed lipopolysaccharide-induced up-regulation of heparinase 1, but the effect was abolished by Sirt1 knockdown in endothelial cells. Our results suggest that IFN-β plus NR protects against endothelial damage during sepsis via activation of the SIRT1/heparinase 1 pathway.

Effect of Docosahexaenoic Acid (DHA) on the Apoptosis of Human Endothelial ECV304 Cells (어유의 Docosahexaenoic Acid (DHA)가 인체혈관 내피세포(ECV304 Cells)에서의 Apoptosis에 미치는 영향)

  • Kim Young-Youn;Kim Hyo-Sook;Kim Mae-Ha;Jang Soo-Jeong;Lee Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.357-365
    • /
    • 2006
  • DHA, one of w-3 fatty acids, modulates cell growth or death though the changes of apoptotic signaling in human endothelial ECV304 cells. We investigated the effects of DHA on the changes of apoptotic signaling in human vascular endothelial ECV304 cells using lipid peroxidation (LPO) metabolites. LPO could be originated by dietary polyunsaturated fatty acids such as linoleic acid(LA), arachidonic acid(AA) and docosahexaenoic acid (DHA). DHA caused cell death of ECV304 cells compared to LA, AA or control as evidenced by changes in cell morphology and MTT assay. LPO levels was significantly elevated by 10 fold in DHA-treated ECV 304 cells and caspase-3 activity was increased by DHA corresponding to increasing incubation times compared to control. One of reasons of the cell death in DHA-treated ECV304 cells could be expected that caspase activity, marker for mitochondrial damages, might be triggered by the increasing LPO levels. Our results strongly indicated that DHA induced LPO production has an important role on apoptotic signaling pathway in ECV304 cells. LPO production in endothelial cells which was metabolized by oxidation of dietary PUFA, might be one of risk factors in the initial progression of atherosclerosis.

Curcumin targets vascular endothelial growth factor via activating the PI3K/Akt signaling pathway and improves brain hypoxic-ischemic injury in neonatal rats

  • Li, Jia;An, Yan;Wang, Jia-Ning;Yin, Xiao-Ping;Zhou, Huan;Wang, Yong-Sheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.423-431
    • /
    • 2020
  • This study aimed to evaluate the effect of curcumin on brain hypoxic-ischemic (HI) damage in neonatal rats and whether the phosphoinositide 3-kinase (PI3K)/Akt/vascular endothelial growth factor (VEGF) signaling pathway is involved. Brain HI damage models were established in neonatal rats, which received the following treatments: curcumin by intraperitoneal injection before injury, insulin-like growth factor 1 (IGF-1) by subcutaneous injection after injury, and VEGF by intracerebroventricular injection after injury. This was followed by neurological evaluation, hemodynamic measurements, histopathological assessment, TUNEL assay, flow cytometry, and western blotting to assess the expression of p-PI3K, PI3K, p-Akt, Akt, and VEGF. Compared with rats that underwent sham operation, rats with brain HI damage showed remarkably increased neurological deficits, reduced right blood flow volume, elevated blood viscosity and haematocrit, and aggravated cell damage and apoptosis; these injuries were significantly improved by curcumin pretreatment. Meanwhile, brain HI damage induced the overexpression of p-PI3K, p-Akt, and VEGF, while curcumin pretreatment inhibited the expression of these proteins. In addition, IGF-1 treatment rescued the curcumin-induced down-regulated expression of p-PI3K, p-Akt, and VEGF, and VEGF overexpression counteracted the inhibitory effect of curcumin on brain HI damage. Overall, pretreatment with curcumin protected against brain HI damage by targeting VEGF via the PI3K/Akt signaling pathway in neonatal rats.

Blood Vessel Regeneration using Human Umbilical Cord-derived Endothelial Progenitor Cells in Cyclophosphamide-treated Immune-deficient Mice

  • Kwon, Soon-Keun;Ko, Yu-Jin;Cho, Tae-Jun;Park, Eu-Gene;Kang, Byung-Chul;Lee, Gene;Cho, Jae-Jin
    • International Journal of Oral Biology
    • /
    • v.36 no.3
    • /
    • pp.117-122
    • /
    • 2011
  • Endothelial cells are a vital constituent of most mammalian organs and are required to maintain the integrity of these tissues. These cells also play a major role in angiogenesis, inflammatory reactions, and in the regulation of thrombosis. Angiogenesis facilitates pulp formation and produces the vessels which are essential for the maintenance of tooth homeostasis. These vessels can also be used in bone and tissue regeneration, and in surgical procedures to place implants or to remove cancerous tissue. Furthermore, endothelial cell regeneration is the most critical component of the tooth generation process. The aim of the present study was to stimulate endothelial regeneration at a site of acute cyclophosphamide (CP)-induced endothelial injury by treatment with human umbilical cord-derived endothelial/mesenchymal stem cells (hEPCs). We randomly assigned 16 to 20-week-old female NOD/SCID mice into three separate groups, a hEPC ($1{\times}10^5$ cells) transplanted, 300mg/kg CP treated and saline (control) group. The mice were sacrificed on days 5 and 10 and blood was collected via the abdominal aorta for analysis. The alanine transaminase (ALT), aspartate aminotransferase (AST), serum alkaline phosphatase (s-ALP), and albumin (ALB) levels were then evaluated. Tissue sections from the livers and kidneys were stained with hematoxylin and eosin (HE) for microscopic analysis and were subjected to immunohistochemistry to evaluate any changes in the endothelial layer. CP treatment caused a weight reduction after one day. The kidney/body weight ratio increased in the hEPC treated animals compared with the CP only group at 10 days. Moreover, hEPC treatment resulted in reduced s-ALP, AST, ALT levels compared with the CP only group at 10 days. The CP only animals further showed endothelial injuries at five days which were recovered by hEPC treatment at 10 days. The number of CD31-positive cells was increased by hEPC treatment at both 5 and 10 days. In conclusion, the CP-induced disruption of endothelial cells is recovered by hEPC treatment, indicating that hEPC transplantation has potential benefits in the treatment of endothelial damage.