• Title/Summary/Keyword: endothelial cell

Search Result 1,036, Processing Time 0.055 seconds

Effects of L-Arginine Supplementation and Regular Exercise in D-Galactose Induced Aging Rat Aorta: Study on Inflammatory Factors, Vasodilation Regulatory Factors (노화유도 쥐의 대동맥에서 L-arginine 투여와 규칙적인 운동의 효과: 염증인자와 혈관이완조절 인자의 변화)

  • Lee, Jin;Kwak, Yi-Sub;Yoo, Young-June;Park, Sok
    • Journal of Life Science
    • /
    • v.21 no.10
    • /
    • pp.1415-1421
    • /
    • 2011
  • The purpose of this study was to identify the effects of an L-arginine supplementation and regular exercise training on NF-${\kappa}B$, TNF-${\alpha}$, iNOS, Cav-1, eNOS and Ang II in the aortas of D-galactose (D-gal) induced aging rats. The male Strague-Dawley rats were treated with a D-galactose aging inducing agent; the D-gal injection (50 mg/kg) was given intraperitoneally for 12 wk. Experimental groups were divided into five groups: (1) Young control group (Y-Con, n=8), (2) Aging control group (A-Con, n=8), (3) Aging exercise group (A-Ex, n=8), (4) Aging exercise group with L-arginine supplementation group (A-Ex+A, n=8), and (5) Aging with L-arginine supplementation group (A-A, n=8). The exercise consisted of running on a treadmill for 60 min/day at 20 m/min for 6 day/wk, at 0% gradient for 12 wk. The L-arginine supplementation was given orally at a dose of 150 mg/kg/day for 12 wk. The findings of this study were as follows: 1. NF-${\kappa}B$, TNF-${\alpha}$, iNOS, Cav-1 and Ang II proteins in the aortas of D-gal induced rats were significantly increased, however, L-arginine supplementation and regular exercise resulted in a significant inhibition in the expression of NF-${\kappa}B$, TNF-${\alpha}$, iNOS, Cav-1 and Ang II proteins. 2. eNOS protein in the aortas of D-gal induced rats was significantly decreased, however, L-arginine supplementation and regular exercise resulted in a significant increase in the expression of eNOS proteins. In conclusion, the findings of the present study reveal that L-arginine supplementation alone or regular exercise alone or in combination with L-arginine supplementation for 12 wk increases anti-inflammatory effects by decreasing NF-${\kappa}B$, TNF-${\alpha}$, and iNOS protein expressions within the aortic tissue. In addition, L-arginine supplementation alone or regular exercise alone or in combination with L-arginine supplementation may prevent endothelial function by up-regulation of eNOS protein in the aortas of D-gal induced aging rats.

Oxidized LDL is a Chemoattractant for the Eosinophils and Neutrophils (산화 저비중 리포 단백이 호산구와 호중구에 대한 화학주성)

  • Hwang, Young-Sil;Lee, Jong-Deog;Busse, William B.
    • Tuberculosis and Respiratory Diseases
    • /
    • v.51 no.3
    • /
    • pp.211-223
    • /
    • 2001
  • Background : Rhinovirus infection of the airways results in increased permeability of the airway vascular endothelium with the influx of plasma proteins, including lipids such as LDL. In vitro studies on the effect of oxLDL on leukocytes has shown many pro inflammatory effects on multiple leukocytes. We hypothesized that oxLDL is one mechanism for recruiting granulocytes to the airways during a RV infection. Therefore, chemotaxis and transendothelial migration, in response to nLDL, was determined for these granulocytes. Methods : nLDL was oxidized with 5mM Cu2S04 for 20-24 hours. 3-5 105 cells were loaded into the Transwell filter while the chemotatic agonists were placed in the lower well for chemotaxis. Confluent monolayers on HPMEC were grown on Transwell filters for transendothelial migration. The filters were washed and eosinophils and neutrophils loaded on to the filter with the chemotatic agonist was were placed in the lower well. The wells were incubated for 3 hours. The number of migrating cells was counted on a hemocytometer. Results : OxLDL, but not nLDL, is chemotatic for eosinophils and neutrophils. The level of granulocytes chemotaxis was dependent on both the concentration of LDL and its degree of oxidation. OxLDL stimulates eosinophil and neutrophils migration across HPMEC monolayers (+/-IL-$1{\beta}$ preactivation) in a dose dependent manner. Conclusion : Increased vascular permeability during a RV infection may lead to the influx and oxidation of LDL. The resulting oxLDL. is one possible mechanism for the recruitment of neutrophils and eosinophils to the airway interstitial matrix. Once in the airways, granulocytes can further interact with oxLDL to promote airway inflammation.

  • PDF

Monoclonal Antibody against leucocyte CD11b(MAb 1B6) increase the early mortality rate in Spraque Dawley with E. coli pneumonia (백혈구 CD11b에 대한 단 클론 항체 (MAb 1B6)는 Spraque Dawley의 E. coli 폐렴의 조기 사망률을 증가시킨다)

  • Kim, Hyung Jung;Kim, Sung Kyu;Lee, Won Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.4
    • /
    • pp.579-589
    • /
    • 1996
  • Background : Activation of neutrophil is critical for the clearance of microorganisms and toxic host mediators during sepsis. Unfortunately the activated neutrophil and its toxic byproducts can produce tissue injury and organ dysfunction. The leucocyte CD11/18 adhesion complex regulates neutrophil-endothelial cell adhesion, the first step in neutrophil migration to sites of injection and inflammation. To investigate the potential of neutrophil inhibition as a treatment strategy for sepsis, we evaluated the effects of monoclonal antibody against CD11b (MAb 1B6) in rats intrabronchial challenged with Escherichia coli. Methods : Animals were randomly assigned to receive monoclonal antibody against CD11b (1 mg/kg, sc) and bovine serum albumin(BSA, 1 mg/kg, sc) 6 hr before, at 0 and 6 hr after intrabronchial challenge of $20x10^9$ CFU/kg E. coli 0111. Animals were randomized to treat either 24, 60 or 90% oxygen after bacterial challenge and begining 4 hr after inoculation, all animals were received 100 mg/kg ceftriaxone qd for 3 days. Peripheral and alveolar neutrophil(by bronchoalveolar lavage) counts and lung injury parameters such as alveolar-arte rial $PO_2$ difference, wet to dry lung weight ratio and protein concentration of alveolar fluid were measured in survived rats at 12 hr and 96 hr. Results : Monoclonal antibody against CD11b decreased circulating and alveolar neutrophil especially more in 12 hr than in 96 hr The lung injury parameters of antibody-treated animals were not different from those of BSA-treated animals. but It was meaningless due to small number of survived animals. The early(6 hr) mortality rate was significantly increased in antibody-treated group(51%) compared to BSA-treated group(31%) (P=0.02) but late(from 12 hr to 72 hr) mortality rate was not different in antibody-treated group(44%) from BSA-treated group(36%) (P =0.089). Conclusion : Leucocyte CD11b/18 adhesion molecule is known to regulate neutrophil migration to the site of infection and inflammation. The monoclonal antibody against CD11b decreased alveolar neutrophil in rats with pulmonary sepsis and increased early mortality rate. Therefore, we can speculate that monoclonal antibody against CD11b blocks of alveolar recruitment of neutrophils, impairs host defense mechanism and increases early mortality rate of pulmonary sepsis in rat.

  • PDF

Effect of Mulberry (Morus alba L.) Extract on Blood Flow Improvement (오디 추출물(Morus alba L.)의 혈행개선 효과)

  • Park, Youn-Sil;Kang, Seong-Sun;Choi, Hyoung-Ja;Yang, Sung-Jun;Shon, Ho-Hyeong;Seo, Hyeong-Ho;Jeong, Jong-Moon
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.4
    • /
    • pp.498-506
    • /
    • 2014
  • The objective of this study was to investigate the beneficial effects of mulberry extract (MBE) on blood flow improvement. The $SC_{50}$ value for the DPPH radical scavenging activity of MBE was $89.36{\pm}5.46{\mu}g/mL$. Analysis of the cellular toxicity of MBE on RAW 264.7 and HepG2 cells showed no toxicity under a concentration of 2,500 ${\mu}g/mL$. We found that MBE inhibited the enzyme activity of cyclooxygenase (COX)-2 as well as oxidation of human LDL. Western blotting analysis showed that MBE inhibited protein expression of COX-2 and 5-lipoxygenase in RAW 264.7 cells. In addition, MBE inhibited protein expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in human umbilical vein endothelial cells. Furthermore, MBE reduced the serum levels of total cholesterol and C-reactive protein in a concentration-dependent manner. These results both in vitro and in vivo suggest that MBE can be employed for the improvement of blood flow.

Lung Preservation Study for Above 20 Hours of LPDG Solution in Canine Lung Allotransplactation (폐이식 실험견에서 LPDG용액을 이용한 20시간 이상 폐보존효과 관찰)

  • Park, Chang-Gwon;Gwon, Geon-Yeong;Yu, Yeong-Seon
    • Journal of Chest Surgery
    • /
    • v.30 no.10
    • /
    • pp.949-960
    • /
    • 1997
  • Background. Limited ischemic tolerance of the lung has remained one of the factors that limits the expansion of pulmonary transplantation as a treatment for end-stage pulmonary disease. Numerous studies on safe long term preservation for lung transplantation has been performed for the purpose of developing ideal preservation solution with extracellular type or intracellular type solutions. In this. study, we examined the efficacy of L DG solution in lung preservation longer than 20 hours by comparison with modified Euro-Collins solution. Iwethods. Thirty-(our adult mongrel dogs were divided into two groups. Donor lungs were flushed with LPDG solution(n=9) or modified Euro-Collins(MEC) solution(n=8) and stored for 24 hours at 1$0^{\circ}C$. All donor lungs were perfused through the pulmonary arteries with solutions containing prostaglandin El and verapamil. Left canine lung allotransplantations wereperformed. Assessment(hemodynamic indices and arterial blood gas analysis) of left implanted lung was made by occluding the right pulmonary artery for ten minutes using pulmonary artery Cuff. Assessment was repeated at the interval of 30 minutes, one hour, and two hours later after reperfusion and then chest X-ray, computed tomogram and lung perfusion scan were obtained. In survival dogs follow-up studies were done with assessment with chest X-ray, computed tomogram of the chest and lung perfusion scan on 7th day postoperatively. After preservation above 20 hours, pathological examinations for ultrastructural findings on right lung were performed in each group. Results. With respect to arterial oxygen tension, LPDG group was superior to MEC but there was no statistical significance for 2 hours after reperfusion. Mean pulmonary artery pressure was less increased(p < 0.05) and cardiac output higher(p <0.05) than MEC group until 2 hours after reperfusion. After 2 hours of reperfusion, both groups showed transplanted lung function deteriorated gradually. Perfusion scan of the transplanted lung in LPDG group showed better perfusion rate in immediate post-reperfusion, 3 days and 7 days later respectively but there was no statistical significance and corelation with PaO2 and computed tomoRravhic views. In scanning electron microscopy of pulmonary artery after preservation, LPDG group relatively shows less irregular protrusion of the inner surface of endothelial cell of poulmonary artery than MEC group. Conclusions, e concluded that LPDG solution can offer safe lung preservation above 20 hours with adequate immunosuppressive therapy and prevention of the infection.

  • PDF

The Effect of Antihistamine on Endotoxin-induced Acute Lung Injury (내독소 유도 급성폐손상에서 항히스타민의 역할)

  • Jung, Bock-Hyun;Koh, Youn-Suck;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.52 no.3
    • /
    • pp.219-229
    • /
    • 2002
  • Background : Sepsis-induced acute lung injury (ALI) is caused by many cellular and humoral mediators induced by an endotoxin. Histamine, which is widely distributed in the lungs and has been considered as an important mediator of sepsis. It increases P-selectin expression on the endothelial cell surfaces and induces IL-8 secretion. Therefore, an endotoxin-induced histamine may be related to neutrophil-mediated ALI by inducing the migration and activation of neutrophils in the lung tissue. However, the role of endogenous histamine in endotoxin ALI has not been clarified. The purpose of this study was to investigate how endotoxin-induced ALI is influenced by endogenous histamine and to identify the possible mechanism of action. Materials and Methods : The study consisted of 4 groups using Sprague-Dawley rats : 1) control group, where the rats were infused intratracheally by normal saline, 2) an endotoxin group, where lipopolysaccharide (LPS) was administered intratracheally 3) the $H_2$ receptor antagonist-treated group ($H_2$ group) and 4) the $H_1$ receptor antagonist-treated group ($H_1$ group), where $H_2$-receptor blocker (ranitidine) and $H_1$-receptor blocker(pyrilamine) were co-treated intravenously with the intratracheal administration of an endotoxin. The lung leak index using $I^{125}$-BSA, the total protein and LDH concentration in the lung lavage fluid, myeloperoxidase(MPO) activity in the lung tissue, the pathologic score and the total number of neutrophils, TNF-$\alpha$, IL-$1{\beta}$ and IL-10 in lung lavage (BAL) fluid were measured in each group as the indices of lung injury. Results : Compared to the control group, the endotoxin group exhibited significant increases in all lung injury indices. Significant reductions in the endotoxin-mediated increases in lung leak index (p<0.05) were observed in both the $H_1$ and $H_2$ groups. In addition the total protein (p<0.05) and LDH concentration (p<0.05) in the BAL fluid were also lower in the $H_2$ group compared to the endotoxin group. However, there was no change in the MPO activity in the lung tissue, the pathologic score and the total number of neutrophils in the BAL fluid in both the $H_2$ and $H_1$ groups compared to the endotoxin group. The increases in TNF-$\alpha$ IL-$1{\beta}$ and IL-10 concentrations in the BAL fluid observed in the endotoxin group were not reduced in the $H_2$ and $H_1$ groups. Conclusion : Antihistamine attenuated the enhanced alveolar-capillary permeability induced by the endotoxin via the $H_2$ receptor. However the attenuating mechanism may not be related to the pathogenesis of neutrophil dependent lung injury.

Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart (급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능)

  • Joo, Chan Uhng;Juhng, Woo Suk;Kim, Jae Cheol;Yi, Ho Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1106-1113
    • /
    • 2002
  • Purpose : Nuclear ($factor-{\kappa}BNF-{\kappa}B$) is now recognized as playing a potential role in programmed cell death and the adaptive response to various stress. Cellular hypoxia is a primary manifestation of many cardiovascular diseases. It seems that vascular endothelial growth factor (VEGF) and insulin like growth factor-I(IGF-I) have a function as a protective molecule in the heart against several stress including hypoxia. In this study, the role of $NF-{\kappa}B$ to the cellular response and regulation of protective molecules against the acute hypoxia in the heart was studied. Methods : To cause acute hypoxic stress to the heart, Sprague Dawley rats were exposed to hypoxic chamer($N_2$ 92% and $O_2$ 8%). After the hypoxic exposure, nuclear proteins, total proteins and mRNA were isolated from heart. Translocation of the transcription factors $NF-{\kappa}B$, NF-ATc, AP-1 and NKX-2.5 were evaluated by electrophoretic mobility shift assay(EMSA). The expression of IGF-I and VEGF were studied before and after the hypoxic stress by competitive-PCR, Northern hybridization and Western hybridization. To confirm the role of the $NF-{\kappa}B$ in the heart, the rats also were pretreated with diethyl-dithiocarbamic acid(DDTC) into peritoneal cavity to block $NF-{\kappa}B$ translocation into nucleus. Results : The expression of $NF-{\kappa}B$, AP-1 and NF-ATc were increased by the hypoxic stress. Increased expression of the VEGF and IGF-I were also observed by the hypoxic stress. However, the blocking of the $NF-{\kappa}B$ translocation reduced those expressions of VEGF and IGF-I. Conclusion : These results suggest that $NF-{\kappa}B$ has a protective role against the acute hypoxia through several gene expression, especially VEGF and IGF-I in heart muscle.

Fatty acid analysis and regulatory effects of citron (Citrus junos Sieb. ex TANAKA) seed oil on nitric oxide production, lipid accumulation, and leptin secretion (유자씨유의 지방산분석 및 Nitric Oxide 생성, 지방축적능, 렙틴분비 조절효과)

  • Kim, Tae Woo;Kim, Kyoung Kon;Kang, Yun Hwan;Kim, Dae Jung;Choe, Myeon
    • Journal of Nutrition and Health
    • /
    • v.47 no.4
    • /
    • pp.221-228
    • /
    • 2014
  • Purpose: Citron seed oil (CSO) has been reported to have high antioxidant activity. However, the composition and other biologically activities of CSO have not been reported. In this study, we confirmed the fatty acid composition of CSO, which may be beneficial to vascular disease and obesity. Methods: We investigated the oil composition of CSO using gas chromatography coupled with mass spectrometry (GC-MS) analysis, and cytotoxicity was confirmed by Cell Counting Kit-8 (CCK-8) assay. Nitric oxide (NO) production in human umbilical vein endothelial cells (HUVECs) was measured using Griess reagent, and lipid accumulation and leptin secretion in 3T3-L1 cells were measured by Oil-Red O staining and commercial ELISA kit, respectively. Results: GC-MS analysis indicated that CSO contains several components, including linoleic acid, oleic acid, palmitic acid, stearic acid, linolenic acid, palmitoleic acid, and arachidic acid. In physiological activity analysis, CSO did not induce cytotoxic effects in HUVECs and 3T3-L1 cells. Further, CSO significantly induced nitric oxide and leptin secretion as well as inhibited lipid accumulation. Conclusion: CSO increased NO release, inhibited lipid accumulation, and induced leptin secretion, suggesting it may be useful for the management of vessels and weight gain. Although further studies are required to investigate the safety and mechanism of action of CSO, our results show that the composition and physiological activity of CSO are sufficient for its use as functional edible oil.

The Change of Alveolar-capillary Barrier by Germanium in Acute Lung Injury Induced by Lipopolysaccharide (LPS에 의한 급성 폐손상에서 게르마늄에 의한 폐포-모세혈관 장벽의 변화)

  • Lee, Yoon-Jeong;Cho, Hyun-Gug;Sin, Gun-Ho;Jeune, Kyung-Hee
    • Applied Microscopy
    • /
    • v.39 no.1
    • /
    • pp.27-40
    • /
    • 2009
  • Acute respiratory distress syndrome (ARDS), also known as an acute inflammatory lung disease is developed by various factors that is originated from the destruction of alveolar-capillary barrier, and neutrophils plays an important role in the destruction. The study intended to confirm, the anti-inflammatory effect of germanium, whether a lung injury has been mitigated with the reduction of injury in alveolar-capillary barrier resulting from inhibition of neutrophils migration in lung tissue. Test groups were divided in saline administered CON, 5 hours of endotoxin administered LPS and 5 hours of endotoxin administered Ge+LPS following 1 hours of pre-processed germanium. $100{\mu}g$ endotoxin was melted in 0.5 mL saline and sprayed into airway and 26 mg germanium per 100 g weight was administered into abdominal cavity. The endotoxin group which induced an acute lung injury with administered endotoxin showed dramatic increase of pulmonary edema (p<0.001), protein contents in bronchoalveolar lavage fluid, BALF (p<0.05) and neutrophils of infiltration in BALF (p<0.001) comparing with a control group, while a pre-treated germanium group showed significant decrease in all categories comparing to the endotoxin administerd group. In the result of a microscopic observation, the structure of alveolar-capillary barrier which is constructed with basal lamina, alveolar type I cells and endothelial cell were preserved of the pre-treated germanium group relatively well compare to the endotoxin administered group. And the construction of lamellar body, microvilli and basal lamina of alveolar type II cells were also preserved relatively well. Hence, germanium activates as an anti-Inflammatory mediator in other words, it interfered neutrophils migration into lung tissue, thereby reduced injury of alveolar-capillary barrier from toxic substances of activated neutrophils. Consequently, the study has determined that the acute lung injury induced by endotoxin has been decreased by the pre-treated germanium.

The Changes of Serum Level of Tumor Necrosis Factor-Alpha, Gamma-Interferon and Soluble-Intercellular Adhesion Molecule-1 Relating to the Progression and Treatment of Patients with Pulmonary Tuberculosis (폐결핵의 진행정도 및 치료에 따른 혈청내 Tumor Necrosis Factor-Alpha, Gamma-Interferon 및 Soluble-Intercellular Adhesion Molecule-1의 변화)

  • Kim, Myung-Hoon;Ahn, Joong-Hyun;Moon, Hwa-Sik;Park, Sung-Hak;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.6
    • /
    • pp.1167-1177
    • /
    • 1998
  • Background : Pulmonary tuberculosis is one of the diseases characterized granuloma formation which was controlled by cellular immune reactions. In the process of granulomatous changes, activated alveolar macrophages and T lymphocytes secrete many cytokines including interleukin-1 (IL-1), tumor necrosis factor-alpha(TNF-$\alpha$), interferon-gamma(IFN-$\gamma$) which mediate inflammatory reactions. Intercelluar adhesion molecule-1(ICAM-1) also known to major role player in inflammatory processes, and increased cellular expressions when endothelial cell was stimulated by IL-1, TNF and IFN. Method : To evaluate relationships among cellular immune reactions and clinical stages, pulmonary tuberculosis patients were classified into three groups according to their clinical stages including minimal, moderate and far advanced tuberculosis. TNF-$\alpha$ IFN-$\gamma$, sICAM-1 (soluble form of ICAM-1) were measured at the time of diagnosis and after 6-months anti-tuberculosis medications by radioimmuno assay or enzyme linked immunosolvent assay. Result : TNF-$\alpha$, IFN-$\gamma$, sICAM-1 were significantly increased in moderate and far advanced pulmonary tuberculosis patients but no meaningful changes in minimal staged patients. 6-months anti-tuberculosis medications reduced serum sICAM-1 levels significantly, related to clinical improvement but no significant changes were found in the serum levels of TNF-$\alpha$ and IFN-$\gamma$. In the point of correlations. positive ones revealed between TNF-$\alpha$ and sICAM-1, also between IFN-$\gamma$ and sICAM-1 but no correlation between TNF-$\alpha$ and IFN-$\gamma$. Conclusion : Measurement of serum sICAM-1 could be useful parameter to evaluate the severity of pulmonary tuberculosis and to monitor disease activities during anti-tuberculosis medications.

  • PDF