• 제목/요약/키워드: endosymbiont

검색결과 21건 처리시간 0.028초

Molecular Docking Studies of Wolbachia Endosymbiont of Brugia Malayi's Carbonic Anhydrase Using Coumarin-chromene Derivatives Towards Designing Anti-filarial Agents

  • Malathy, P.;Jagadeesan, G.;Gunasekaran, K.;Aravindhan, S.
    • 통합자연과학논문집
    • /
    • 제9권4호
    • /
    • pp.268-274
    • /
    • 2016
  • Filariasis causing nematode Brugia malayi is shown to harbor wolbachia bacteria as symbionts. The sequenced genome of the wolbachia endosymbiont from B.malayi (wBm) offers an unprecedented opportunity to identify new wolbachia drug targets. Hence the enzyme carbonic anhydrase from wolbachia endosymbiont of Brugia malayi (wBm) which is responsible for the reversible interconversion of carbon dioxide and water to bicarbonate and protons (or vice versa) is chosen as the drug target for filariasis. This enzyme is thought to play critical functions in bacteria by involving in various steps of their life cycle which are important for survival, The 3D structure of wBm carbonic anhydrase is predicted by selecting a suitable template using the similarity search tool, BLAST. The BLAST results shows a hexapeptide transferase family protein from Anaplasma phagocytophilum (PDB ID: 3IXC) having 77% similarity and 54% identity with wBm carbonic anhydrase. Hence the above enzyme is chosen as the template and the 3D structure of carbonic anhydrase is predicted by the tool Modeller9v7. Since the three dimensional structure of carbonic anhydrase from wolbachia endosymbiont of Brugia malayi has not yet solved, attempts were made to predict this protein. The predicted structure is validated and also molecular docking studies are carried out with the suitable inhibitors that have been solved experimentally.

콩(Glycine max)의 공생균주 Bradyrhizobium japonicum SNU001의 특성 (Characteristics of Bradyrhizobium japonicum SNU001, aSsymbiotic Strain of Glycion max)

  • 고세리;박용근;안정선
    • 미생물학회지
    • /
    • 제29권2호
    • /
    • pp.143-147
    • /
    • 1991
  • The root nodules and Glycine max were classified as determinate nodule based on their morphological characteristics, and isolated endosymbiont as a Bradyrhizobium based on its growth rate and single subpolar flagellum. The isolate was similar to B. japonicum USDA110 in utilization of carbon source, growth at 38.deg.C and 2% NaCl, production of $H_{2}$S and especially in the restriction endonuclease digestion pattern of symbiotic genes, allowing them to be placed in sTI group together. The former, however, grew better than the later in broad pH range from 5.0 to 9.5. Infectivity and effectivity of the isolate were confirmed by inoculation of soybean seedlings with the isolates. Characteristics of the reisolated endosymbiont from induced root nodules were identical to those of the first isolate. From these results, it was confirmed that Bradyrhizobium strain isolated from the root nodules of Glycine max was a real symbiont, and was named B. japonicum SNU001.

  • PDF

Upregulation of Endosymbiont Densities in Bemisia tabaci by Acquisition of Tomato Yellow Leaf Curl Virus

  • Jahan, S.M. Hemayet;Lee, Kyeong-Yeoll
    • Current Research on Agriculture and Life Sciences
    • /
    • 제30권2호
    • /
    • pp.124-130
    • /
    • 2012
  • Sweetpotato whitefly, Bemisia tabaci, is a vector of more than 100 plant-diseased viruses, as well as a serious pest of various horticultural plants. This species harbors a primary endosymbiont Portiera along with several secondary endosymbionts such as Cardinium and Hamiltonella. We investigated whether or not TYLCV acquisition alters the densities of endosymbionts in the body of B. tabaci using quantitative real-time PCR. Our results showed that the densities of both Cardinium and Hamiltonella, but not Portiera, increased upon acquisition of TYLCV. In addition, expression of GroEL, a molecular chaperone produced by Hamiltonella, was significantly upregulated in TYLCV-infected whiteflies. Our results suggest that endosymbionts may play an important role in TYLCV transmission mechanism within the body of B. tabaci.

  • PDF

Comparative Genomics Study of Candidatus Carsonella Ruddii; an Endosymbiont of Economically Important Psyllids

  • Mondal, Shakhinur Islam;Akter, Elma;Akter, Arzuba;Khan, Md Tahsin;Jewel, Nurnabi Azad
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.373-382
    • /
    • 2020
  • Candidatus Carsonella ruddii is an endosymbiont that resides in specialized cells within the body cavity of plant sap-feeding insects called psyllids. The establishment of symbiotic associations is considered one of the key factors for the evolutionary success of psyllids, as it may have helped them adapt to imbalanced food resources like plant sap. Although C. ruddii is defined as a psyllid primary symbiont, the genes for some essential amino acid pathways are absent. Complete genome sequences of several C. ruddii strains have been published. However, in-depth intra-species comparison of C. ruddii strains has not yet been done. This study therefore aimed to perform a comparative genome analysis of six C. ruddii strains, allowing the interrogation of phylogenetic group, functional category of genes, and biosynthetic pathway analysis. Accordingly, overall genome size, number of genes, and GC content of C. ruddii strains were reduced. Phylogenetic analysis based on the whole genome proteomes of 30 related bacterial strains revealed that the six C. ruddii strains form a cluster in same clade. Biosynthetic pathway analysis showed that complete sets of genes for biosynthesis of essential amino acids, except tryptophan, are absent in six C. ruddii strains. All genes for tryptophan biosynthesis are present in three C. ruddii strains (BC, BT, and YCCR). It is likely that the host may depend on a secondary symbiont to complement its deficient diet. Overall, it is therefore possible that C. ruddii is being driven to extinction and replacement by new symbionts.

Differentially Expressed Gene Profile of Acanthamoeba castellanii Induced by an Endosymbiont Legionella pneumophila

  • Moon, Eun-Kyung;Park, So-Min;Chu, Ki-Back;Quan, Fu-Shi;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제59권1호
    • /
    • pp.67-76
    • /
    • 2021
  • Legionella pneumophila is an opportunistic pathogen that survives and proliferates within protists such as Acanthamoeba spp. in environment. However, intracellular pathogenic endosymbiosis and its implications within Acanthamoeba spp. remain poorly understood. In this study, RNA sequencing analysis was used to investigate transcriptional changes in A. castellanii in response to L. pneumophila infection. Based on RNA sequencing data, we identified 1,211 upregulated genes and 1,131 downregulated genes in A. castellanii infected with L. pneumophila for 12 hr. After 24 hr, 1,321 upregulated genes and 1,379 downregulated genes were identified. Gene ontology (GO) analysis revealed that L. pneumophila endosymbiosis enhanced hydrolase activity, catalytic activity, and DNA binding while reducing oxidoreductase activity in the molecular function (MF) domain. In particular, multiple genes associated with the GO term 'integral component of membrane' were downregulated during endosymbiosis. The endosymbiont also induced differential expression of various methyltransferases and acetyltransferases in A. castellanii. Findings herein are may significantly contribute to understanding endosymbiosis of L. pneumophila within A. castellanii.

Transposon Tn5 Mutagenesis of Bradyrhizobium japonicum: A Histidine Auxotrophic Mutant of B. japonicum Shows Defective Nodulation Phenotype on Soybean

  • So, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.110-113
    • /
    • 1995
  • Transposon Tn5 was used to induce random insertional mutations in Bradyrhizobium japonicum, a soybean endosymbiont. By genomic Southern blot analysis, transposition events were found to have occurred randomly throughout the B. japonicum genome. After screening 3, 626 mutants by auxotrophy test, a histidine auxotroph was isolated. Upon plant infection test, the His mutant showed a 3~4 day delay in nodule formation.

  • PDF

Molecular characterization of bacterial endosymbionts of Acanthamoeba isolates from infected corneas of Korean patients

  • Xuan, Ying-Hua;Yu, Hak-Sun;Jeong, Hae-Jin;Seol, Sung-Yong;Chung, Dong-Il;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제45권1호
    • /
    • pp.1-9
    • /
    • 2007
  • The endosymbionts of 4 strains of Acanthamoeba(KA/E9, KA/E21, KA/E22, and KA/E23) isolated from the infected corneas of Korean patients were characterized via orcein stain, transmission electron microscopic examination, and 16S rDNA sequence analysis. Double membrane-bound, rod-shaped endosymbionts were distributed randomly throughout both the trophozoites and cysts of each of Acanthamoeba isolates. The endosymbionts of KA/E9, KA/E22, and KA/E23 were surrounded by electron-translucent areas. No lacunae-like structures were observed in the endosymbionts of KA/E21, the bacterial cell walls of which were studded with host ribosomes. Comparative analyses of the 16S rDNA sequences showed that the endosymbionts of KA/E9, KA/E22 and KA/E23 were closely related to Caedibacter caryophilus, whereas the KA/E21 endosymbiont was assigned to the Cytophaga-Flavobacterium-Bacteroides(CFB) phylum. In the 4 strains of Acanthamoeba, the hosts of the endosymbionts were identified as belonging to the Acanthamoeba castellanii complex, which corresponds to the T4 genotype. Acanthamoeba KA/E21 evidenced characteristics almost identical to those of KA/E6, with the exception of the existence of endosymbionts. The discovery of these endosymbionts from Acanthamoeba may prove essential to future studies focusing on interactions between the endosymbionts and the amoebic hosts.

Natural occurrence of Mycobacterium as an endosymbiont of Acanthamoeba isolated from a contact lens storage case

  • Yu, Hak-Sun;Jeong, Hae-Jin;Hong, Yeon-Chul;Seol, Seong-Yong;Chung, Dong-Il;Kong, Hyun-Hee
    • Parasites, Hosts and Diseases
    • /
    • 제45권1호
    • /
    • pp.11-18
    • /
    • 2007
  • Recent in vitro studies have revealed that a certain Mycobacterium can survive and multiply within free-living amoebae. It is believed that protozoans function as host cells for the intracellular replication and evasion of Mycobacterium spp. under harmful conditions. In this study, we describe the isolation and characterization of a bacterium naturally observed within an amoeba isolate acquired from a contact lens storage case. The bacterium multi-plied within Acanthamoeba, but exerted no cytopathic effects on the amoeba during a 6-year amoebic culture. Trasnmission electron microscopy showed that the bacteria were randomly distributed within the cytoplasm of trophozoites and cysts of Acanthamoeba. On the basis of the results of 18S rRNA gene analysis, the amoeba was identified as A. lugdunensis. A 16S rRNA gene analysis placed this bacterium within the genus Mycobacterium. The bacterium evidenced positive reactivity for acid-fast and fluorescent acid-fast stains. The bacterium was capable of growth on the Middlebrook 7H11-Mycobacterium-specific agar. The identification and characterization of bacterial endosymbionts of free-living protozoa bears significant implications for our understanding of the ecology and the identification of other atypical mycobacterial pathogens.

Endosymbionts of Acanthamoeba Isolated from Domestic Tap Water in Korea

  • Choi, Seon-Hee;Cho, Min-Kyoung;Ahn, Soon-Cheol;Lee, Ji-Eun;Lee, Jong-Soo;Kim, Dong-Hee;Xuan, Ying-Hua;Hong, Yeon-Chul;Kong, Hyun-Hee;Chung, Dong-Il;Yu, Hak-Sun
    • Parasites, Hosts and Diseases
    • /
    • 제47권4호
    • /
    • pp.337-344
    • /
    • 2009
  • In a previous study, we reported our discovery of Acanthamoeba contamination in domestic tap water; in that study, we determined that some Acanthamoeba strains harbor endosymbiotic bacteria, via our molecular characterization by mitochondrial DNA restriction fragment length polymorphism (Mt DNA RFLP). Five (29.4%) among 17 Acanthamoeba isolates contained endosymbionts in their cytoplasm, as demonstrated via orcein staining. In order to estimate their pathogenicity, we conducted a genetic characterization of the endosymbionts in Acanthamoeba isolated from domestic tap water via 16S rDNA sequencing. The endosymbionts of Acanthamoeba sp. KA/WP3 and KA/WP4 evidenced the highest level of similarity, at 97% of the recently published 16S rDNA sequence of the bacterium, Candidatus Amoebophilus asiaticus. The endosymbionts of Acanthamoeba sp. KA/WP8 and KA/WP12 shared a 97% sequence similarity with each other, and were also highly similar to Candidatus Odyssella thessalonicensis, a member of the $\alpha$-proteobacteria. The endosymbiont of Acanthamoeba sp. KA/WP9 exhibits a high degree of similarity (85-95%) with genus Methylophilus, which is not yet known to harbor any endosymbionts. This is the first report, to the best of our knowledge, to show that Methylophilus spp. can live in the cytoplasm of Acanthamoeba.