• Title/Summary/Keyword: endoplasmic reticulum stress

Search Result 210, Processing Time 0.027 seconds

Paraquat Induced Heme Oxygenase-1 in Dopaminergic Cells (도파민 세포에서 Paraquat에 의한 헴산화효소-1의 유도)

  • Chun Hong Sung
    • KSBB Journal
    • /
    • v.20 no.1 s.90
    • /
    • pp.21-25
    • /
    • 2005
  • Paraquat, a widely used herbicide, has been suggested as a potential risk factor for Parkinson's disease. Heme oxygenase-1(HO-1), a marker for oxidative stress and endoplasmic reticulum(ER) stress, is known to catalyze heme to biliverdin, carbon monoxide and free iron in response to various stimuli. Here we show that paraquat activates HO-1 expression in a time-and dose-dependent manner in substantia nigra(SN) dopaminergic neuronal cells. Activation of Ho-1 by paraquat was regulated primarily at the level of gene transcription. Deletion analysis of the promoter and the 5' distal enhancers, E1 and E2, of the HO-1 gene revealed that the E2 enhancer is a potent inducer of the paraquat-dependent Ho-1 gene expression in dopamninergic neuronal cells. Mutational analysis of the E2 enhacer further demonstrated that the transcription factor activator protein-1(AP-1) plays an important role in mediating paraquat-induced HO-1 gene transcription. Moreover, using specific inhibitors of the mitogen-activated protein kinases(MAPKs), we investigated the role of paraquat and MAPKs for HO-1 gene regulation in dopaminergic cells. The c-Jun N-terminal kinase(JNK) inhibitor SP600125 significantly suppressed the expression of HO-1 by paraquat. All these results demonstrate that induction of HO-1 by paraquat requies the activation of the AP-1 and JNK pathway.

Characterization of Anti-inflammation Effect of Aqueous Extracts from Phellinus baumii (바우미 상황버섯 추출물의 항염증 효과에 관한 연구)

  • Kim, Hye-Min;Lee, Dong-Hee
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.179-183
    • /
    • 2010
  • This study is to characterize the postulated anti-inflammatory effect of the hot water extracts from the Phellinus baumii. RAW264.7, macrophage cell line, was activated by lipopolysaccharide (LPS) and, further, treated with Phellinus baumii's aqueous extract. When the cultured macrophage cells were treated with LPS, they show typical signs of endoplasmic reticulum stress (ERS) and an increment in secretion of inflammatory cytokine compared to the non-treated control: The expression of glucose-regulated protein78 (Grp78), Grp94, and C/EBP homologous protein/GADD 153 (CHOP) increased along with augmented secretion of interlukin-6. Cellular nitric oxide content also significantly went up in comparison to the non-LPS treatment. When the LPS-treated RAW264.7 was treated with the aqueous Phellinus baumii extracts, however, the expression of ERS markers markedly reduced and the release of nitric oxide declined. Also, the expression of induced nitric oxide synthase (iNOS) notably diminished similarly as the NO content. In conclusion, this study strongly indicated that aqueous Phellinus baumii extract can be utilized directly as anti-inflammation agent and serves as a source of functional ingredient to lessen the inflammation.

Regulation of ER Stress Response on 1,2,3-Trichloropropane-Induced Hepatotoxicity of Sprague Dawley Rats (1,2,3-Trichloropropane으로 유도된 SD랫드의 간독성에서 ER 스트레스 반응의 조절)

  • Tae Ryeol Kim;You Jeong Jin;Ji Eun Kim;Hee Jin Song;Yu Jeong Roh;Ayun Seol;Eun Seo Park;Ki Ho Park;Su Jeong Lim;Su Ha Wang;Yong Lim;Dae Youn Hwang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress responses are markedly induced during toxic responses caused by various chemical substances, including difenoconazole, but no research has been conducted on 1,2,3-trichloropropane (TCP), a chemical that is generally used in agriculture and industry, which induces hepatotoxicity. Therefore, in this study, the changes in indicators for hepatotoxicity, apoptosis, and ER stress were analyzed in TCP-treated Sprague Dawley (SD) rats to study the regulatory mechanism of ER stress during the hepatotoxicity. The TCP-treated group decreased in body weight and dietary intake compared to the vehicle-treated group, and necrosis and vacuolation increased significantly in liver histology. In addition, the expression of apoptosis-related factors, including Bax/Bcl-2 and cleaved caspase (Cas)-3/Cas-3 increased significantly in the TCP-treated group compared to the vehicle-treated group. In the analysis of ER stress response indicators, the expression of C/EBP homologous protein (CHOP), phospho-eukaryotic translation initiation factor 2 alpha subunit (eIF2α), and phospho-inositol-requiring enzyme 1α (IRE1α) increased only in the TCP100-treated group and decreased in the TCP200-treated group. However, the transcriptions of growth arrest and DNA damage-34 (GADD34) increased in the TCP200-treated group, while Spliced X-box binding protein-1 (XBP1s) and unspliced XBP1(XBP1u) decreased in the same group. These results suggest that the ER stress response is successfully triggered during the hepatotoxicity induced by TCP treatment through the alternative regulation of the unfolded-protein response (UPR) pathway.

hCG-induced Endoplasmic Reticulum Stress Leads to Activation of the IRE1/XBP1 Pathway in Mouse Leydig Tumor Cells (mLTC-1) (mLTC-1 세포에 hCG 처리에 의해 유도된 소포체 스트레스가 IRE1/XBP1 경로의 활성화 유발)

  • Park, Sun-Ji;Kim, Tae-Shin;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.24 no.10
    • /
    • pp.1039-1045
    • /
    • 2014
  • This study analyzed whether human chorionic gonadotropin (hCG) induces ER stress via the IRE/XBP1 pathway in mouse Leydig tumor (mLTC-1) cells. In a previous study, we demonstrated that the unfolding protein response (UPR) plays an important role in the expression of steroidogenic enzymes by modulating the ATF6 pathway, as well as ER stress-mediated apoptosis in hCG-stimulated Leydig cells. Although UPR signaling has been reported to regulate the IRE1/XBP1 pathway, it is not known whether hCG-induced ER stress in Leydig cells can activate the pathway. To investigate the activation of the IRE1/XBP1 pathway in mLTC-1 cells after hCG treatment, we performed a Western blot analysis to detect the phospho-IRE1 protein and an RT-PCR analysis to validate splicing of XBP1 mRNA. We used ER stress-activated indicator (ERAI) constructs for monitoring the activity of IRE1 and then analyzed by fluorescence microscopy and flow cytometry. The expression levels of the phospho-IRE1 protein markedly increased in response to the hCG treatment. In the mLTC-1 cells transfected with an F-XBP1-venus/F-$XBP1{\Delta}DBD$-venus construct, the hCG treatment led to the appearance of green fluorescent cells and detectable fluorescence in the nucleus and cytosol, respectively. In addition, splicing of XBP1 mRNA significantly increased after the hCG treatment. Taken together, these results indicate that hCG-induced ER stress leads to activation of the IRE1/XBP pathway in Leydig cells.

Anti-stress and Sleep-enhancing Effects of Ptecticus tenebrifer Water Extract Through the Regulation of Corticosterone and Melatonin Levels (코르티코스테론 및 멜라토닌 수치 조절을 통한 동애등에 물 추출물의 항스트레스 및 수면 개선 효과)

  • Oh, Dool-Ri;Ko, Haeju;Hong, Seong Hyun;Kim, Yujin;Oh, Kyo-Nyeo;Kim, Yonguk;Bae, Donghyuck
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.601-610
    • /
    • 2022
  • P. tenebrifer (PT) belongs to the Diptera order and Stratiomyidae family. Recently, insect industry have been focused as food, animal feed and environmental advantages. γ-aminobutyric acid (GABA) and melatonin have been associated with regulating sleep and depression. GABA is the primary inhibitory neurotransmitter and is synthesized via biotransformation of monosodium glutamate (MSG) to GABA by lactic acid bacteria. In this study, we first used a GABA-enhanced PT extract, wherein GABA was enhanced by feeding MSG to PT. The underlying mechanisms preventing stress and insomnia were investigated in a corticosterone (CORT)-induced endoplasmic reticulum (ER) stress and chronic restraint stress (CRS)-exposed mouse model, as well as in pentobarbital (45 mg/kg)-induced sleep behaviors in mice. In the present study, the GABA peak was detected in high-performance liquid chromatography-evaporative light scattering detector (HPLC-ELSD) analysis and showed in Ptecticus tenebrifer water extract (PTW) but not in non-PTW extract. The results showed that PTW and Ptecticus tenebrifer with 70% ethanol extract (PTE) exerted neuroprotective effects by protecting against CORT-induced downregulation of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and cAMP-response element binding protein (CREB) expression. In addition, PTW (300 mg/kg) significantly reduced CORT levels in CRS-exposed mice. Furthermore, PTW (100 and 300 mg/kg) significantly reduced sleep latency and increased total sleep duration in pentobarbital (45 mg/kg)-induced sleeping behaviors, which was related to serum melatonin levels. In conclusion, our results suggest that PTW exerts anti-stress and sleep-enhancing effects by regulating serum CORT and melatonin levels.

Prostate Apoptosis Response-4 (Par-4) as a Cancer Therapeutic Target (암 치료 표적으로써 prostate apoptosis response-4 (Par-4))

  • Woo, Seon Min;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.947-952
    • /
    • 2015
  • Prostate apoptosis response-4 (Par-4) was originally identified in androgen-independent prostate cancer cells undergoing apoptosis. Par-4 is ubiquitously expressed in normal cells and tissues, but it is downregulated in several types of cancers. Par-4 is a 38 kDa tumor suppressor protein encoded by the PARW gene. Par-4 promotes apoptosis in a variety of cancerous cells, but not in normal cells. In this review, we focused on the structure, expression and function of Par-4 in apoptotic signaling pathway. Functional domains of Par-4 include two nuclear localization sequences (NLS), a leucine zipper (LZ) domain, a nuclear export sequence (NES) and selective for apoptosis in cancer cell (SAC) domain. Many studies have underlined the importance of Par-4 in preventing cancer development. The activity of Par-4 is differently regulated by localization of intracellular and extracellular Par-4. Intracellular Par-4 inhibits Akt- and NF-κB-mediated cell survival pathways and downregulates Bcl-2 expression. Extracellular Par-4 activates the extrinsic apoptotic pathway by binding to cell surface receptor GRP78, a stress response protein that is in the endoplasmic reticulum (ER). Endogenous Par-4 sensitizes cancer cells to various apoptotic stimuli, while exogenous Par-4 enhances SAC domain-dependent apoptosis in cancer cells, but not normal cells. Therefore, Par-4 is an attractive target for cancer therapy.

Potentiation of the Cytotoxic Effects of Imatinib and TRAIL by Nonsteroidal Anti-inflammatory Drugs on Human Cancer Cells (비스테로이드소염제(Nonsteroidal Anti-inflammatory Drug, NSAID)에 의한 인간 암세포의 imatinib 및 TRAIL의 세포 독성 증강 기전 연구)

  • Moon, Hyun-Jung;Kang, Chi-Dug;Kim, Sun-Hee
    • Journal of Life Science
    • /
    • v.30 no.8
    • /
    • pp.661-671
    • /
    • 2020
  • The resistance of cancer cells to anti-cancer drugs is the leading cause of chemotherapy failure. The clinical use of nonsteroidal anti-inflammatory drugs (NSAIDs) has been gradually extended to cancer treatment through combination with anti-cancer drugs. In the current study, we investigated whether NSAIDs including celecoxib (CCB), 2,5-dimethyl celecoxib (DMC), and ibuprofen (IBU) could enhance the cytotoxic effects of imatinib and TNF-related apoptosis inducing ligand (TRAIL) on human cancer cells. We found that the NSAIDs potentiated TRAIL and imatinib cytotoxicity against human hepatocellular carcinoma (HCC) cell lines SNU-354, SNU-423, SNU-449, and SNU-475/TR and against leukemic K562 cells with high level of CD44 (CD44highK562), respectively. More specifically, CCB induced endoplasmic reticulum stress via up-regulation of ATF4/CHOP which is associated with the induction of autophagy against HCC and CD44high K562 cells. NSAID-induced autophagic activity accelerated TRAIL cytotoxicity of HCC cells through up- and down-regulation of DR5 and c-FLIP, respectively. The NSAIDs also potentiated imatinib-induced cytotoxicity and apoptosis through down-regulation of markers in CD44highK562 cells that express a stemness phenotype. Our results suggest that the ability of NSAIDs to induce autophagy could enhance the cytotoxicity of TRAIL and imatinib, leading to a reverse resistance to these drugs in the cancer cells. In conclusion, NSAIDs in combination with low-dose TRAIL or imatinib may constitute a novel clinical strategy that maximizes therapeutic efficacy of each drug and effectively reduces the toxic side effects.

Transgenic Siberian Ginseng Cultured Cells That Produce High Levels of Human Lactoferrin (인체 락토페린 생산 형질전환 가시오갈피 배양세포)

  • Jo Seung-Hyun;Kwon Suk-Yoon;Kim Jae-Whune;Lee Ki-Teak;Kwak Sang-Soo;Lee Haeng-Soon
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.209-215
    • /
    • 2005
  • Lactoferrin is an iron-binding glycoprotein with many biological roles, including the protection against microbial and virus infection, stimulation of the immune system. We developed the transgenic Siberian ginseng (Acanthopanax senticosus) cell cultures producing the human lactoferrin (hLf) protein following Agrobacterium tumefaciens-mediated transformation. A construct containing a targeting signal peptide from tobacco endoplasmic reticulum fused to hLf cDNA under the control of an oxidative stress-inducible SWPA2 promoter was engineered. Transgenic Siberian ginseng cultured cells to produce a recombinant hLf protein were successfully generated and confirmed by PCR and Southern blot analysis. ELISA and western blot analysis showed that full length-hLf protein was synthesized in the transgenic cells. The production of hLf increased proportionally to cell growth and reached a maximal (up to 3% of total soluble proteins) at the stationary phase. These results suggest that the transgenic Siberian ginseng cultured cells in this study will be biotechnologically useful for the commercial production of medicinal plant cell cultures to produce hLf protein.

SREBP as a Global Regulator for Lipid Metabolism (지질대사 조절에서 SREBP의 역할)

  • Lee, Wonhwa;Seo, Young-kyo
    • Journal of Life Science
    • /
    • v.28 no.10
    • /
    • pp.1233-1243
    • /
    • 2018
  • Sterol regulatory-element binding proteins (SREBPs) are a family of transcription factors that regulate lipid homeostasis and metabolism by controlling the expression of enzymes required for endogenous cholesterol, fatty acid (FA), triacylglycerol, and phospholipid synthesis. The three SREBPs are encoded by two different genes. The SREBP1 gene gives rise to SREBP-1a and SREBP-1c, which are derived from utilization of alternate promoters that yield transcripts in which distinct first exons are spliced to a common second exon. SREBP-2 is derived from a separate gene. Additionally, SREBPs are implicated in numerous pathogenic processes, such as endoplasmic reticulum stress, inflammation, autophagy, and apoptosis. They also contribute to obesity, dyslipidemia, diabetes mellitus, and nonalcoholic fatty liver diseases. Genome-wide analyses have revealed that these versatile transcription factors act as important nodes of biological signaling networks. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signaling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. SREBPs are activated through the PI3K-Akt-mTOR pathway in these processes, but the molecular mechanism remains to be understood. This review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ, and organism levels.

Isolation and Characterization of a Novel Transcription Factor ATFC Activated by ER Stress from Bombyx mori Bm5 Cell Lines (누에 배양세포(Bm5)로부터 분리한 새로운 전사제어인자 ATFC의 특성분석)

  • 구태원;윤은영;김성완;최광호;황재삼;박수정;권오유;강석우
    • Journal of Life Science
    • /
    • v.13 no.5
    • /
    • pp.596-603
    • /
    • 2003
  • Cells respond to an accumulation of unfolded proteins in the endoplasmic reticulum (ER) by increasing transcription of genes encoding molecular chaperones and folding enzymes. The information is transmitted from the ER lumen to the nucleus by intracellular signaling pathway, called the unfolded protein response (UPR). To obtain genes related to UPR from B. mori, the cDNA library was constructed with mRNA isolated from Bm5 cell lines in which N-glycosylation was inhibited by tunicamycin treatment. From the cDNA library, we selected 40 clones that differentially expressed when cells were treated with tunicamycin. Among these clones, we have isolated ATFC gene showing similarity with Hac1p, encoding a bZIP transcription factor of 5. cerevisiae. Basic-leucine zipper (bZIP) domain in amino acid sequences of ATFC shared homology with yeast Hac1p. Also, ATFC is up-regulated by accumulation of unfolded proteins in the ER through the treatment of ER stress drugs. Therefore we suggest that ATFC represents a major component of the putative transcription factor responsible for the UPR leading to the induction of ER-localized stress proteins.