• 제목/요약/키워드: endoplasmic reticulum (ER) stress

검색결과 171건 처리시간 0.024초

Ginsenoside Rb1 and compound K improve insulin signaling and inhibit ER stress-associated NLRP3 inflammasome activation in adipose tissue

  • Chen, Weijie;Wang, Junlian;Luo, Yong;Wang, Tao;Li, Xiaochun;Li, Aiyun;Li, Jia;Liu, Kang;Liu, Baolin
    • Journal of Ginseng Research
    • /
    • 제40권4호
    • /
    • pp.351-358
    • /
    • 2016
  • Background: This study was designed to investigate whether ginsenoside Rb1 (Rb1) and compound K (CK) ameliorated insulin resistance by suppressing endoplasmic reticulum (ER) stress-induced inflammation in adipose tissue. Methods: To induce ER stress, epididymal adipose tissue from mice or differentiated 3T3 adipocytes were exposed to high glucose. The effects of Rb1 and CK on reactive oxygen species production, ER stress, TXNIP/NLRP3 inflammasome activation, inflammation, insulin signaling activation, and glucose uptake were detected by western blot, emzyme-linked immunosorbent assay, or fluorometry. Results: Rb1 and CK suppressed ER stress by dephosphorylation of $IRE1{\alpha}$ and PERK, thereby reducing TXNIP-associated NLRP3 inflammasome activation in adipose tissue. As a result, Rb1 and CK inhibited IL-$1{\beta}$ maturation and downstream inflammatory factor IL-6 secretion. Inflammatory molecules induced insulin resistance by upregulating phosphorylation of insulin receptor substrate-1 at serine residues and impairing insulin PI3K/Akt signaling, leading to decreased glucose uptake by adipocytes. Rb1 and CK reversed these changes by inhibiting ER stress-induced inflammation and ameliorating insulin resistance, thereby improving the insulin IRS-1/PI3K/Akt-signaling pathway in adipose tissue. Conclusion: Rb1 and CK inhibited inflammation and improved insulin signaling in adipose tissue by suppressing ER stress-associated NLRP3 inflammation activation. These findings offered novel insight into the mechanism by which Rb1 and CK ameliorate insulin resistance in adipose tissue.

Regulation of the Endoplasmic Reticulum Stress by BIP/GRP78 is involved in Meiotic Maturation of Porcine Oocytes In Vitro

  • Park, Hyo-Jin;Park, Jae-Young;Kim, Jin-Woo;Yang, Seul-Gi;Jung, Jae-Min;Kim, Min-Ji;Park, Joung Jun;Koo, Deog-Bon
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권4호
    • /
    • pp.407-415
    • /
    • 2017
  • In the present study, we investigated the role of binding immunoglobulin protein/glucose-regulated protein, 78-kDa (BIP/GRP78)-regulated endoplasmic reticulum (ER)-stress on meiotic maturation and cumulus cells expansion in porcine cumulus-oocyte complexes (COCs). Previously, it has been demonstrated that unfolded protein response (UPR)-related genes, such as molecules involved in ER-stress defense mechanisms, were expressed in matured oocytes and cumulus cells during in vitro maturation (IVM) of porcine oocytes. However, BIP/GRP78-mediated regulation of ER stress in porcine oocytes has not been reported. Firstly, we observed the effects of knockdown of BIP/GRP78 (an UPR initiation marker) using porcine-specific siRNAs (#909, #693, and #1570) on oocyte maturation. Among all siRNAs, siRNA #693 significantly reduced the protein levels of UPR marker proteins (BIP/GRP78, ATF4, and P90ATF6) in porcine COCs observed by Western blotting and immunofluorescence analysis. We also observed that the reduction of BIP/GRP78 levels by siRNA#693 significantly inhibited the meiotic maturation of oocytes (siRNA #693: $32.5{\pm}10.1%$ vs control: $77.8{\pm}5.3%$). In addition, we also checked the effect of ER-stress inhibitors, tauroursodeoxycholic acid (TUDCA, $200{\mu}M$) and melatonin ($0.1{\mu}M$), in BIP/GRP78-knockdown oocytes. TUDCA and melatonin treatment could restore the expression levels of ER-stress marker proteins (BIP/GRP78, $p-eIF2{\alpha}$, $eIF2{\alpha}$, ATF4, and P90ATF6) in siRNA #693-transfected matured COCs. In conclusion, these results demonstrated that BIP/GRP78-mediated regulation of UPR signaling and ER stress plays an important role in in vitro maturation of porcine oocytes.

Streptococcus pneumonia 감염으로 변화한 사람 폐 상피세포 단백질의 프로테오믹 분석 (Proteomic Analysis of Protein Changes in Human Lung Cancer Epithelial Cells Following Streptococcus pneumoniae Infection)

  • 이윤영;정경태
    • 생명과학회지
    • /
    • 제23권8호
    • /
    • pp.1050-1056
    • /
    • 2013
  • Streptococcus pneumoniae는 전 세계적으로 급성 호흡기 질환 높은 사망률 나타내며, 정상인의 비인후부에 존재하여 호흡기 감염을 통해 폐렴, 수막염, 중이염, 패혈증, 복막염, 골수염 등을 일으킨다. 그러나 S. pneumoniae가 폐 조직에 침입하는 분자적 메커니즘과 혈류를 통한 침입은 많은 연구에도 불구하고 아직 명확하게 알려지지 않았다. 그러므로 본 실험에서는 S. pneumoniae D39의 감염 및 침입에 대한 분자 메카니즘을 알고자 사람의 폐암상피 세포 유래 A549 세포를 이용하여 감염 후 시간의 경과에 따라 변화되는 A549 세포의 모양을 관찰하였으며, 또한 숙주세포의 단백질 패턴 변화를 조사하였다. 일부 A549 세포는 감염 후 2 시간부터 세포의 모양이 둥근형태로 변화된 것으로 관찰되었으며, 감염 3 시간째에는 세포의 모양이 둥글며 filopodia가 아주 잘 발달하였다. 감염 4 시간에 도달하게 되면 거의 모든 A549 세포가 둥글며 잘 발달된 filopodia를 형성하였다. 감염 후 각 시간 별 A549 세포의 총 단백질들을 추출하여 시간의 경과에 따라 특이적으로 양 적인 변화를 나타내는 단백질을 MALDI-TOF 분석법을 사용하여 동정하였다. Streptococcus pneumoniae D39 감염 후 시간에 따라 변화하는 단백질 중 대다수가 특이하게도 molecular chaperone에 속하는 단백질들이었다. 대표적인 cytosol chaperone인 Hsp90과 Hsp70의 경우 감소하는 패턴을 나타낸 반면에 endoplasmic reticulum (ER)에 존재하는 chaperone인 Grp94와 Grp78 (BiP)은 감염 후 점차 증가하는 패턴을 나타내었다. ER chaperone인 Grp94와 Grp78의 증가는 ER stress signaling pathway와 관련 있는 것으로 알려져 있어, S. pneumoniae D39의 감염에 의한 이들 단백질의 변화 패턴을 ER stress를 유발 시켰을 때와 비교하였다. Tunicamycin 또는 thapsigargin으로 처리하여 ER stress를 유발시킨 A549 세포의 형태는 변화하지 않았으며 흡착세포의 형태를 유지하였다. 그러나 Western blot을 통한 molecular chaperone의 분석 결과는 S. pneumoniae D39 감염의 경우와 일치하였다. 본 연구에서 얻은 결과는 S. pneumoniae D39의 감염은 A549 세포의 형태적 변화를 유발하며 또한 molecular chaperone 증가와 감소를 유발한다는 것을 보여주며, 특이적으로 Grp94와 Grp78이 증가되는 것으로 보아 S. pneumoniae D39 감염은 A549 세포 내 ER stress를 유발한다고 생각된다.

Inhibition of endoplasmic reticulum stress in high-fat-diet-induced obese C57BL/6 mice: Efficacy of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris

  • Lee, Mi Rim;Bae, Su Ji;Kim, Ji Eun;Song, Bo Ram;Choi, Jun Young;Park, Jin Ju;Park, Ji Won;Kang, Mi Ju;Choi, Hyeon Jun;Choi, Young Whan;Kim, Kyung Mi;Hwang, Dae Youn
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.288-294
    • /
    • 2018
  • A few clues about correlation between endoplasmic reticulum (ER) stress and mulberry (Morus alba) leaves were investigated in only the experimental autoimmune myocarditis and streptozotocin-induced diabetes. To investigate whether a novel extract of mulberry leaves fermented with Cordyceps militaris (EMfC) could suppress ER in fatty liver, alterations in the key parameters for ER stress response were measured in high fat diet (HFD)-induced obese C57L/6 mice treated with EMfC for 12 weeks. The area of adipocytes in the liver section were significantly decreased in the HFD+EMfC treated group as compared to the HFD+Vehicle treated group, while their level was higher in HFD+Vehicle treated group than No treated group. The level of the eukaryotic initiation factor 2 alpha ($eIF2{\alpha}$) and inositol-requiring enzyme 1 beta ($IRE1{\alpha}$) phosphorylation and CCAAT-enhancer-binding protein homologous protein (CHOP) expression were remarkably enhanced in the HFD+Vehicle treated group. However, their levels were restored in the HFD+EMfC treated group, although some differences were detected in the decrease rate. Similar recovery was observed on the ER stress-induced apoptosis. The level of Caspase-3, Bcl-2 and Bax were decreased in the HFD+EMfC and HFD+orlistat (OT) treated group compared to the HFD+Vehicle treated group. The results of the present study therefore provide first evidence that EMfC with the anti-obesity effects can be suppressed ER stress and ER stress-induced apoptosis in the hepatic steatosis of HFD-induced obesity model.

도담탕가미방(導痰湯加味方)이 tunicamycin에 의한 소포체 스트레스성 C6 glial 세포사멸에 미치는 영향 (Protective Effect of Dodamtanggami-bang on Endoplasmic Reticulum Stress in C6 Glial Cells)

  • 김봉상;문병순
    • 동의생리병리학회지
    • /
    • 제24권6호
    • /
    • pp.1004-1011
    • /
    • 2010
  • This study was designed to evaluate the protective effects of Dodamtanggami-bang (DDTG) on tunicamycin induced cell death by ER stress in C6 glial cells. Cell viability was measured by MTT assay and LDH release. Apoptosis was determined by caspase activity and flow cytometry in C6 glial cells. Expression of ER stress mediators including, GRP78 and CHOP proteins were measured by Western blot analysis. Tunicamycin induced the apoptosis of C6 glial cells, which was characterized as nucleic acid and caspase-3 activation, PARP cleavage, and sub-G0/G1 fraction of cell cycle increase. However, pretreatment with DDTG protected C6 glial cells from tunicamycin. Treatment with tunicamycin resulted in the increased the expression of GRP78 and CHOP protein and produced ROS generation. However, pretreatment with DDTG inhibited the ER stress pathway, including increase of the expression of GRP78, CHOP proteins in C6 glial cells treated with tunicamycin. Taken together, these data suggest that DDTG is able to protect C6 glial cells from tunicamycin with marked inhibition of ER stress.

[ ${\alpha}$ ]Synuclein Induces Unfolded Protein Response Via Distinct Signaling Pathway Independent of ER-membrane Kinases

  • Kang, Shin-Jung;Shin, Ki-Soon;Kim Kwon, Yun-Hee
    • Animal cells and systems
    • /
    • 제10권3호
    • /
    • pp.115-120
    • /
    • 2006
  • Parkinson's disease (PD) is a neurodegenerative disease caused by selective degeneration of dopaminergic neurons in the substantia nigra. Mutations in ${\alpha}$-synuclein have been causally linked to the pathogenesis of hereditary PD. In addition, it is a major component of Lewy body found in the brains of sporadic cases as well. In the present study, we examined whether overexpression of wild type or PD-related mutant ${\alpha}$-synuclein induces unfolded protein response (UPR) and triggers the known signaling pathway of the resulting endoplasmic reticulum (ER) stress in SH-SY5Y cells. Overexpression of wild type, A30P, and A53T ${\alpha}$-synuclein all induced XBP-1 mRNA splicing, one of the late stage UPR events. However, activation of ER membrane kinases and upregulation of ER or cytoplsmic chaperones were not detected when ${\alpha}$-synuclein was overexpressed. However, basal level of cytoplsmic calcium was elevated in ${\alpha}$-synuclein-expressing cells. Our observation suggests that overexpression of ${\alpha}$-synuclein induces UPR independent of the known ER membrane kinase-mediated signaling pathway and induces ER stress by disturbing calcium homeostasis.

Cyclosporine A and bromocriptine attenuate cell death mediated by intracellular calcium mobilization

  • Kim, In-Ki;Park, So-Jung;Park, Jhang-Ho;Lee, Seung-Ho;Hong, Sung-Eun;Reed, John C.
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.482-487
    • /
    • 2012
  • To identify the novel inhibitors of endoplasmic reticulum stress-induced cell death, we performed a high throughput assay with a chemical library containing a total of 3,280 bioactive small molecules. Cyclosporine A and bromocriptine were identified as potent inhibitors of thapsigargiin-induced cell death (cut-off at $4{\sigma}$ standard score). However, U74389G, the potent inhibitor of lipid peroxidation had lower activity in inhibiting cell death. The inhibition effect of cyclosporine A and bromocriptine was specific for only thapsigargin-induced cell death. The mechanism of inhibition by these compounds was identified as modification of the expression of glucose regulated protein-78 (GRP-78/Bip) and inhibition of phosphorylation of p38 mitogen activated protein kinase (MAPK). However, these compounds did not inhibit the same events triggered by tunicamycin, which was in agreement with the cell survival data. We suggest that the induction of protective unfolded protein response by these compounds confers resistance to cell death. In summary, we identified compounds that may provide insights on cell death mechanisms stimulated by ER stress.

Salubrinal Alleviates Pressure Overload-Induced Cardiac Hypertrophy by Inhibiting Endoplasmic Reticulum Stress Pathway

  • Rani, Shilpa;Sreenivasaiah, Pradeep Kumar;Cho, Chunghee;Kim, Do Han
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.66-72
    • /
    • 2017
  • Pathological hypertrophy of the heart is closely associated with endoplasmic reticulum stress (ERS), leading to maladaptations such as myocardial fibrosis, induction of apoptosis, and cardiac dysfunctions. Salubrinal is a known selective inhibitor of protein phosphatase 1 (PP1) complex involving dephosphorylation of phospho-eukaryotic translation initiation factor 2 subunit $(p-eIF2)-{\alpha}$, the key signaling process in the ERS pathway. In this study, the effects of salubrinal were examined on cardiac hypertrophy using the mouse model of transverse aortic constriction (TAC) and cell model of neonatal rat ventricular myocytes (NRVMs). Treatment of TAC-induced mice with salubrinal ($0.5mg{\cdot}kg^{-1}{\cdot}day^{-1}$) alleviated cardiac hypertrophy and tissue fibrosis. Salubrinal also alleviated hypertrophic growth in endothelin 1 (ET1)-treated NRVMs. Therefore, the present results suggest that salubrinal may be a potentially efficacious drug for treating pathological cardiac remodeling.

CrABCA2 Facilitates Triacylglycerol Accumulation in Chlamydomonas reinhardtii under Nitrogen Starvation

  • Jang, Sunghoon;Kong, Fantao;Lee, Jihyeon;Choi, Bae Young;Wang, Pengfei;Gao, Peng;Yamano, Takashi;Fukuzawa, Hideya;Kang, Byung-Ho;Lee, Youngsook
    • Molecules and Cells
    • /
    • 제43권1호
    • /
    • pp.48-57
    • /
    • 2020
  • The microalga Chlamydomonas reinhardtii accumulates triacylglycerols (TAGs) in lipid droplets under stress conditions, such as nitrogen starvation. TAG biosynthesis occurs mainly at the endoplasmic reticulum (ER) and requires fatty acid (FA) substrates supplied from chloroplasts. How FAs are transferred from chloroplast to ER in microalgae was unknown. We previously reported that an Arabidopsis thaliana ATP-binding cassette (ABC) transporter, AtABCA9, facilitates FA transport at the ER during seed development. Here we identified a gene homologous to AtABCA9 in the C. reinhardtii genome, which we named CrABCA2. Under nitrogen deprivation conditions, CrABCA2 expression was upregulated, and the CrABCA2 protein level also increased. CrABCA2 knockdown lines accumulated less TAGs and CrABCA2 overexpression lines accumulated more TAGs than their untransformed parental lines. Transmission electron microscopy showed that CrABCA2 was localized in swollen ER. These results suggest that CrABCA2 transports substrates for TAG biosynthesis to the ER during nitrogen starvation. Our study provides a potential tool for increasing lipid production in microalgae.

Involvement of Endoplasmic Reticulum Stress in Palmitate-induced Apoptosis in HepG2 Cells

  • Cho, Hyang-Ki;Lee, Jin-Young;Jang, Yu-Mi;Kwon, Young-Hye
    • Toxicological Research
    • /
    • 제24권2호
    • /
    • pp.129-135
    • /
    • 2008
  • The results of recent studies indicate that high levels of free fatty acids(FFAs) and adipokines may be the main causes of non-alcoholic liver disease; however, the molecular mechanism that links FFAs to lipotoxicity remains unclear. In the present study, we treated HepG2 cells with FFA(either palmitate or oleate) to investigate the mechanisms involved in lipotoxicity in the liver cells. We also treated cells with palmitate in the presence of a chemical chaperone, 4-phenylbutyric acid(PBA), to confirm the involvement of ER stress in lipotoxicity. Palmitate significantly induced cytotoxicity in dose- and time-dependent manners. Apoptosis was also significantly induced by palmitate as measured by caspase-3 activity and DAPI staining. Palmitate led to increased expressions of the spliced form of X-box-protein(Xbp)-1 mRNA and C/EBP homologous transcription factor(CHOP) protein, suggesting activation of the unfolded-protein response. PBA co-incubation significantly attenuated apoptosis induced by palmitate. The above data demonstrate that high levels of palmitate induce apoptosis via the mediation of ER stress in the liver cells and that chemical chaperones act to modulate ER stress and accompanying apoptosis.