• 제목/요약/키워드: endoplasmic reticulum (ER) stress

검색결과 171건 처리시간 0.024초

소포체 스트레스에 대한 Protein Disulfide Isomerase의 세포보호효과 (Bombyx mori Protein Disulfide Isomerase (bPDI) Protects Sf9 Cells from Endoplasmic Reticulum (ER) Stress)

  • 구태원;윤은영;김성완;최광호;강석우;권기상;권오유
    • 생명과학회지
    • /
    • 제17권8호통권88호
    • /
    • pp.1129-1134
    • /
    • 2007
  • bPDI가 ER내 misfolding 단백질의 생성을 제한함으로써 곤충변역과 관계하는지를 해석하기 위하여 bPDI가 과발현(overexpression)되는 곤충세포주와 이와 반대로 bPDI가 억제발현(knock-down)되는 곤충세포주를 제작하여 bPDI가 곤충면역에 관련하는지를 해석하였다. bPDI가 과발현되는 세포주 (Sf9-bPDI)는 정상세포주(Sf9)나 pIZT/V5-His 벡터만 도입된 세포주(Sf9-pIZT)에 비하여 생존율이 30% 이상 높았지만, bPDI의 전사체 발현이 억제된 세포주(Sf9-bPDI-dsRNA)는 오히려 정상세포주나 pIZT/V5-His 벡터만 도입된 세포주에 비하여 생존율이 약 15%낮았다. 이와 같은 결과로써, bPDI는 ER내 misfolding 단백질의 생성을 제한함으로써 곤충의 ERSE과 밀접하게 관련할 것이라 추정할 수 있었다.

Molecular Characterization of Ischemia-Responsive Protein 94 (irp94) Response to Unfolded Protein Responses in the Neuron

  • ;;;;권오유
    • 대한의생명과학회지
    • /
    • 제12권2호
    • /
    • pp.81-89
    • /
    • 2006
  • The ischemia-responsive 94 gene (irp94) encoding a 94 kDa endoplasmic reticulum resident protein was investigated its molecular properties associated with unfoled protein responses. First, the expression of irp94 mRNA was tested after the reperfusion of the transient forebrain ischemia induction at the central nervous system in three Mongolian gerbils. Second, irp94 expression in PC12 cells, which are derived from transplantable rat pheochromocytoma cultured in the DMEM media, was tested at transcriptional and translational levels. The half life of irp94 mRNA was also determined In PC12 cells. Last, the changes of irp94 mRNA expression were investigated by the addition of various ER stress inducible chemicals (A23187, BFA, tunicamycin, DTT and $H_2O_2$) and proteasome inhibitors, and heat shock. High level expression of irp94 mRNA was detected after 3 hours reperfusion in the both sites of the cerebral cortex and hippocampus of the gerbil brain. The main regulation of irp94 mRNA expression in PC 12 cells was determined at the transcriptional level. The half life of irp94 mRNA in PC12 cells was approximately 5 hours after the initial translation. The remarkable expression of irp94 mRNA was detected by the treatment of tunicamycin, which blocks glycosylation of newly synthesized polypeptides, and $H_2O_2$, which induces apoptosis. When PC12 cells were treated with the cytosol proteasome inhibitors such as ALLN (N-acetyl-leucyl-norleucinal) and MG 132 (methylguanidine), irp94 mRNA expression was increased. These results indicate that expression of irp94 was induced by ER stress including oxidation condition and glycosylation blocking in proteins. Expression of irp94 was increased when the cells were chased after heat shock, suggesting that irp94 may be involved in recovery rather than protection against ER stresses. In addition, irp94 expression was remarkably increased when cytosol proteasomes were inhibited by ALLN and MG 132, suggesting that irp94 plays an important role for maintaining the ERAD (endoplasmic reticulum associated degradation) function.

  • PDF

ER Stress에 의해 유발된 C6 Glial Cells의 손상에 대한 용뇌(龍腦)의 보호효과 (Protective Effect of Borneolum on ER Stress-induced Damage in C6 Glial Cells)

  • 전인철;방창호;문병순;이인
    • 동의생리병리학회지
    • /
    • 제23권6호
    • /
    • pp.1368-1378
    • /
    • 2009
  • Unfolded protein response (UPR) is an important genomic response to endoplasmic reticulum (ER) stress. The ER response is characterized by changes in specific proteins, induction of ER chaperones and degradation of misfolded proteins. Also, the pathogenesis of several diseases like Alzheimer's disease, neuronal degenerative diseases, and diabetes reveal the role of ER stress as one of the causative mechanisms. Borneolum has been used for neuronal disease in oriental medicine. In the present study, the protective effect of borneolum on thapsigargin-induced apoptosis in rat C6 glial cells. Treatment with C6 glial cells with 5 uM thapsigargin caused the loss of cell viability, and morphological change, which was associated with the elevation of intracellular $Ca^{++}$ level, the increase in Grp78 and CHOP and cleavage of pro-caspase 12 Furthermore, thapsigargin induced Grp98, XBP1, and ATF4 protein expression in C6 glial cells. Borneolum reduced thapsigargin-induced apoptosis through ER pathways. In the ER pathway, borneolum attenuated thapsigargin-induced elevations in Grp78, CHOP, ATF4, and XBP1 as well as reductions in pro-caspase 12 levels. Also, our data showed that borneolum protected thapsigargin-induced cytotoxicity in astrocytes from rat (P3) brain. Taken together, our data suggest that borneolum is neuroprotective against thapsigargin-induced ER stress in C6 glial cells and astrocytes. Accordingly, borneolum may be therapeutically useful for the treatment of thapsigargin-induced apoptosis in central nervous system.

Expression of Beta-catenin-interacting Protein 1 (CTNNBIP1) Gene Is Increased under Hypothermia but Decreased under Additional Ischemia Conditions

  • Kwon, Kisang;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • 대한의생명과학회지
    • /
    • 제20권3호
    • /
    • pp.168-172
    • /
    • 2014
  • It has recently been shown that hypothermia treatment improves brain ischemia injury and is being increasingly considered by many clinicians. However, the precise roles of hypothermia for brain ischemia are not yet clear. In the present study we demonstrated firstly that hypothermia induced beta-catenin-interacting protein 1 (CTNNBIP1) gene expression and its expression was dramatically decreased under ischemic conditions. It was also demonstrated that hypothermia activated endoplasmic reticulum (ER) stress sensors especially both, the phosphorylation of $eIF2{\alpha}$, and ATF6 proteolytic cleavage. However, the factors of apoptosis and autophagy were not associated with hypothermia. These findings suggested that hypothermia controlled CTNNBIP1 gene expression under ischemia, which may provide a clue to the development of treatments and diagnostic methods for brain ischemia.

Structure-Based Insight on the Mechanism of N-Glycosylation Inhibition by Tunicamycin

  • Danbi Yoon;Ju Heun Moon;Anna Cho;Hyejoon Boo;Jeong Seok Cha;Yoonji Lee;Jiho Yoo
    • Molecules and Cells
    • /
    • 제46권6호
    • /
    • pp.337-344
    • /
    • 2023
  • N-glycosylation, a common post-translational modification, is widely acknowledged to have a significant effect on protein stability and folding. N-glycosylation is a complex process that occurs in the endoplasmic reticulum (ER) and requires the participation of multiple enzymes. GlcNAc-1-P-transferase (GPT) is essential for initiating N-glycosylation in the ER. Tunicamycin is a natural product that inhibits N-glycosylation and produces ER stress, and thus it is utilized in research. The molecular mechanism by which GPT triggers N-glycosylation is discussed in this review based on the GPT structure. Based on the structure of the GPT-tunicamycin complex, we also discuss how tunicamycin reduces GPT activity, which prevents N-glycosylation. This review will be highly useful for understanding the role of GPT in the N-glycosylation of proteins, as well as presents a potential for considering tunicamycin as an antibiotic treatment.

Metformin ameliorates bile duct ligation-induced acute hepatic injury via regulation of ER stress

  • Lee, Chi-Ho;Han, Jung-Hwa;Kim, Sujin;Lee, Heejung;Kim, Suji;Nam, Dae-Hwan;Cho, Du-Hyong;Woo, Chang-Hoon
    • BMB Reports
    • /
    • 제53권6호
    • /
    • pp.311-316
    • /
    • 2020
  • Cholestasis is a condition in which the bile duct becomes narrowed or clogged by a variety of factors and bile acid is not released smoothly. Bile acid-induced liver injury is facilitated by necrotic cell death, neutrophil infiltration, and inflammation. Metformin, the first-line treatment for type 2 diabetes, is known to reduce not only blood glucose but also inflammatory responses. In this study, we investigated the effects of metformin on liver injury caused by cholestasis with bile acid-induced hepatocyte injury. Static bile acid-induced liver injury is thought to be related to endoplasmic reticulum (ER) stress, inflammatory response, and chemokine expression. Metformin treatment reduced liver injury caused by bile acid, and it suppressed ER stress, inflammation, chemokine expression, and neutrophil infiltration. Similar results were obtained in mouse primary hepatocytes exposed to bile acid. Hepatocytes treated with tauroursodeoxycholic acid, an ER stress inhibitor, showed inhibition of ER stress, as well as reduced levels of inflammation and cell death. These results suggest that metformin may protect against liver injury by suppressing ER stress and inflammation and reducing chemokine expression.

Effect of an Endoplasmic Reticulum Retention Signal Tagged to Human Anti-Rabies mAb SO57 on Its Expression in Arabidopsis and Plant Growth

  • Song, Ilchan;Lee, Young Koung;Kim, Jin Wook;Lee, Seung-Won;Park, Se Ra;Lee, Hae Kyung;Oh, Soyeon;Ko, Kinarm;Kim, Mi Kyung;Park, Soon Ju;Kim, Dae Heon;Kim, Moon-Soo;Kim, Do Sun;Ko, Kisung
    • Molecules and Cells
    • /
    • 제44권10호
    • /
    • pp.770-779
    • /
    • 2021
  • Transgenic Arabidopsis thaliana expressing an anti-rabies monoclonal antibody (mAb), SO57, was obtained using Agrobacterium-mediated floral dip transformation. The endoplasmic reticulum (ER) retention signal Lys-Asp-Glu-Leu (KDEL) was tagged to the C-terminus of the anti-rabies mAb heavy chain to localize the mAb to the ER and enhance its accumulation. When the inaccurately folded proteins accumulated in the ER exceed its storage capacity, it results in stress that can affect plant development and growth. We generated T1 transformants and obtained homozygous T3 seeds from transgenic Arabidopsis to investigate the effect of KDEL on plant growth. The germination rate did not significantly differ between plants expressing mAb SO57 without KDEL (SO plant) and mAb SO57 with KDEL (SOK plant). The primary roots of SOK agar media grown plants were slightly shorter than those of SO plants. Transcriptomic analysis showed that expression of all 11 ER stress-related genes were not significantly changed in SOK plants relative to SO plants. SOK plants showed approximately three-fold higher mAb expression levels than those of SO plants. Consequently, the purified mAb amount per unit of SOK plant biomass was approximately three times higher than that of SO plants. A neutralization assay revealed that both plants exhibited efficient rapid fluorescent focus inhibition test values against the rabies virus relative to commercially available human rabies immunoglobulins. KDEL did not upregulate ER stress-related genes; therefore, the enhanced production of the mAb did not affect plant growth. Thus, KDEL fusion is recommended for enhancing mAb production in plant systems.

Development of a Reporter System Monitoring Regulated Intramembrane Proteolysis of the Transmembrane bZIP Transcription Factor ATF6α

  • Kim, Jin-Ik;Kaufman, Randal J.;Back, Sung Hoon;Moon, Ja-Young
    • Molecules and Cells
    • /
    • 제42권11호
    • /
    • pp.783-793
    • /
    • 2019
  • When endoplasmic reticulum (ER) functions are perturbed, the ER induces several signaling pathways called unfolded protein response to reestablish ER homeostasis through three ER transmembrane proteins: inositol-requiring enzyme 1 (IRE1), PKR-like ER kinase (PERK), and activating transcription factor 6 (ATF6). Although it is important to measure the activity of ATF6 that can indicate the status of the ER, no specific cell-based reporter assay is currently available. Here, we report a new cell-based method for monitoring ER stress based on the cleavage of $ATF6{\alpha}$ by sequential actions of proteases at the Golgi apparatus during ER stress. A new expressing vector was constructed by using fusion gene of GAL4 DNA binding domain (GAL4DBD) and activation domain derived from herpes simplex virus VP16 protein (VP16AD) followed by a human $ATF6{\alpha}$ N-terminal deletion variant. During ER stress, the GAL4DBD-VP16AD(GV)-$hATF6{\alpha}$ deletion variant was cleaved to liberate active transcription activator encompassing GV-$hATF6{\alpha}$ fragment which could translocate into the nucleus. The translocated GV-$hATF6{\alpha}$ fragment strongly induced the expression of firefly luciferase in HeLa Luciferase Reporter cell line containing a stably integrated 5X GAL4 site-luciferase gene. The established double stable reporter cell line HLR-GV-$hATF6{\alpha}$(333) represents an innovative tool to investigate regulated intramembrane proteolysis of $ATF6{\alpha}$. It can substitute active pATF6(N) binding motif-based reporter cell lines.

Characterization of Tunicamycin as Anti-obesity Agent

  • Song, Ha-Suk;Kim, Hye-Min;Jung, Sook-Yung;Lee, Dong-Hee
    • Biomolecules & Therapeutics
    • /
    • 제17권2호
    • /
    • pp.162-167
    • /
    • 2009
  • Adipocytes undergo adipocyte stress in the excessive presence of lipid. Adipocyte stress accompanies the typical signs of endoplasmic reticulum (ER) stress: unfolded protein response and overexpression of molecular chaperones. Apoptotic induction in adipocytes is known as a good strategy for treating obesity. The drug "tunicamycin" was tested for its therapeutic potential in inducing apoptosis on differentiating adipocytes of 3T3-L1. When the 3T3-L1 cells, stimulated for adipogenesis, were treated with tunicamycin, they showed typical ER stress symptoms. Despite progression in ER stress, however, the differentiated 3T3-L1 hardly proceeded to apoptosis based on the CHOP protein expression and FACS analysis. This is very different from C2C12, the myogenic counterpart of 3T3-L1, which showed significant apoptosis along with ER stress. This study also characterizes a potential mechanism whereby adipocyte may avoid apoptosis to sustain the pathological state of obesity. The level of GRP94 expression significantly upholds in 3T3-L1 under tunicamycin treatment compared to preadipocytes and C2C-12. When GRP94 expression was inhibited by siRNA, 3T3-L1 showed a higher level of CHOP expression compared to C2C12 cells. In conclusion, adipocytes exert an anti-apoptotic mechanism under ER stress caused by tunicamycin; thus, apoptotic induction in adipocyte is not a viable anti-obesity option. The unusual level of GRP94 may serve as a key role whereby adipocytes reach to the obesity level circumventing the apoptosis.

Hepatitis C Virus Non-structural Protein NS4B Can Modulate an Unfolded Protein Response

  • Zheng Yi;Gao Bo;Ye Li;Kong Lingbao;Jing Wei;Yang Xiaojun;Wu Zhenghui;Ye Linbai
    • Journal of Microbiology
    • /
    • 제43권6호
    • /
    • pp.529-536
    • /
    • 2005
  • Viral infection causes stress to the endoplasmic reticulum (ER). The response to endoplasmic reticulum stress, known as the unfolded protein response (UPR), is designed to eliminate misfolded proteins and allow the cell to recover. The role of hepatitis C virus (HCV) non-structural protein NS4B, a component of the HCV replicons that induce UPR, is incompletely understood. We demonstrate that HCV NS4B could induce activating transcription factor (ATF6) and inositol-requiring enzyme 1 (IRE1), to favor the HCV subreplicon and HCV viral replication. HCV NS4B activated the IRE1 pathway, as indicated by splicing of X box-binding protein (Xbp-1) mRNA. However, transcriptional activation of the XBP-1 target gene, EDEM (ER degradation-enhancing $\alpha-mannosidase-like$ protein, a protein degradation factor), was inhibited. These results imply that NS4B might induce UPR through ATF6 and IRE1-XBP1 pathways, but might also modify the outcome to benefit HCV or HCV subreplicon replication.