• Title/Summary/Keyword: endocytosis

Search Result 101, Processing Time 0.021 seconds

Mind Bomb1 and DeltaD are Localized into Autophagosome after Endocytosis in Zebrafish during Neurogenesis

  • Kim, Min-Jung
    • Development and Reproduction
    • /
    • v.15 no.3
    • /
    • pp.215-221
    • /
    • 2011
  • Endocytosis of the Notch ligand, DeltaD, by mind bomb1 is indispensable for activation of Notch in cell fate determination, proliferation, and differentiation during zebrafish neurogenesis. Loss of mind bomb1 activity as an E3 Ubiquitin ligase causes the accumulation of deltaD at the plasma membrane and results in the ectopic neurogenic phenotype by activation of Notch in early zebrafish embryogenesis. However, the regulatory mechanism of deltaD during neurogenesis is not identified yet. This study aims to analyze the pathway of mib1 and deltaD after endocytosis in vivo during zebrafish embryogenesis. Mind bomb1 and deltaD are co-localized into autophagosome and mutant form of mind bomb1 fails to cargo deltaD into autophagosomes. These findings suggest that mind bomb I mediates deltaD regulation by autophagy in an ubiquitin-dependent manner during zebrafish embryogenesis.

The transfer of diacylglycerol from lipophor in to fat body in larval Manduca sexta (유충 Manduca sexta 리포포린에 의한 지방체로의 디아실글리세리드 운반)

  • Yun, Hwa-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1770-1774
    • /
    • 2011
  • This paper was to characterize the transfer of diacylglycerol(DAG) from lipophorin to Manduca sexta larval fat bodies. $[^3H]$-DAG-labeled Lp($[^3H]$-DAG-Lp) was incubated with the larval fat bodies under different times and the time of DAG transfer was determined. Incubation of fat bodies with $[^3H]$-DAG-Lp resulted in accumulation of DAG and TAG in the tissue. The transfer of $[^3H]$-DAG was inhibited in the presence of suramin and unlabeled lipophorin, which would be consistent with a lipophorin receptor. The effects of suramin may be complex because it can change membrane properties when bound to the lipophorin receptor and affect the rate of DAG transfer. To investigate the lipid uptake via receptor-mediated endocytosis, we treated with endocytosis inhibitors, ammonium chloride and chloroquine. The results show that the transfer process of lipid by lipophorin and fat bodies is receptor-mediated endocytosis.

The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation

  • Park, Joohyun;Zhao, Haiyan;Chang, Sunghoe
    • Molecules and Cells
    • /
    • v.37 no.10
    • /
    • pp.753-758
    • /
    • 2014
  • Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrinmediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of the BAR domain which plays a critical role in membrane penetration, SNX9 does not. Thus, whether and how SNX9 BAR domain could induce the deformation of the plasma membrane is not clear. The present study identified the internal putative amphiphatic stretch in the $1^{st}$ ${\alpha}$-helix of the SNX9 BAR domain and proved that together with the N-terminal helix ($H_0$) region, this internal putative amphiphatic stretch is critical for inducing membrane tubulation. Therefore, our study shows that SNX9 uses a unique mechanism to induce the tubulation of the plasma membrane which mediates proper membrane deformation during clathrinmediated endocytosis.

Involvement of GTP-Binding Proteins in Stage-Specific Receptor-Mediated Endocytosis of Coelomic Fluid Proteins into Oocytes of Pseudopotamilla occelata (안점의 꽃갯지렁이 난포세포로 체강액 단백질의 단계특이적 유입을 위한 GTP-Binding Protein의 개입)

  • 남현정;강화선;이양림
    • The Korean Journal of Zoology
    • /
    • v.39 no.3
    • /
    • pp.292-298
    • /
    • 1996
  • Receptor-mediated endocytosis of coelomic fluid proteins (CP), yolk precursor proteins, appears to be regulated by multiple GTP-binding proteins during oogenesis of a polychaete, Pseudopotamilla occelata. Transport of 125 I-CP into the oocytes of intermediate size class, at which CP is the most actively transported, is enhanced by GTP but inhibited by GTP analogues, either GTPrS or GTP$\beta$S. The effects of GTP and GTPrS on the transport were also confirmed by tracing internalization of gold-labeled CP with transmission electron microscope. Internalization of gold-labeled CP into the yolk granules was enhanced by GTP but inhibited by GTPrS.

  • PDF

WEHI-231 cells are defective in the ligand-induced internalization of B cell antigen receptor

  • Yoon, Sang Soon;Kim, Tae Jin
    • IMMUNE NETWORK
    • /
    • v.1 no.3
    • /
    • pp.196-202
    • /
    • 2001
  • Backgorund: WEHI-231 B cell line is a representative model for $IgM^+$ mature B cells. To understand the signaling differences between mature and immature B cells, we compared the responsiveness of WEHI-231 and Bal 17 B cell lines to BCR cross-linking. Methods: The extents of tyrosine phosphorylation, ligand-induced internalization, and activation-induced cell death upon BCR cross-linking were compared in two cell lines. Results: Despite a higher expression of BCR, cross-linking of BCR on WEHI-231 cell evoked a weaker level of tyrosine phosphorylation and BCR endocytosis than Bal 17 cells. Furthermore, the endocytosed BCR could not enter the lysosomal compartment and stayed as peripheral spots in WEHI-231 cells. Conclusion: WEHI-231 cell showed preferred BCR-mediated signaling pathways leading to a reduced capability of antigen presentation as well as the enhanced apoptosis in comparision with Bal 17 cells. These results might reflect the signaling differences between mature and immature B cells.

  • PDF

CUBN mutation: a benign genetic cause of proteinuria?

  • Hyun Kyung Lee
    • Childhood Kidney Diseases
    • /
    • v.27 no.1
    • /
    • pp.19-25
    • /
    • 2023
  • Proteinuria is an important risk factor for renal and cardiovascular disease. It is associated with a risk for glomerulonephritis, chronic kidney disease, and end-stage renal disease. Therefore, if persistent proteinuria is detected, kidney biopsy is considered to diagnose and treat the underlying disease. Recently, variants in the cubilin (CUBN) gene, which is associated with albuminuria, have been reported. This gene encodes cubilin, a membrane glycoprotein receptor expressed in the renal proximal tubules. Cubilin is a component of the megalin and cubilin-amnionless complex that mediates albumin reabsorption into the proximal tubules through endocytosis. A defect in cubilin leads to a reduction in albumin reuptake, resulting in albumin-dominant proteinuria. Although numerous controversies exist, several reports suggest that cubilin defects lead to proteinuria with a high portion of albuminuria but may not impair renal filtration function. If albuminuria due to reduced cubilin function is confirmed as a benign condition, we can consider using genetic studies to detect CUBN mutations in patients with proteinuria and they may not require any treatment or kidney biopsy. Here, we review recent papers on CUBN mutations and discuss the prognosis and management of individuals with this mutation.

Expression of Chemokine Receptors Involved in Receptor-Mediated Endocytosis of Bone Marrow-Derived Stromal Stem Cells (골수 유래 기질 줄기세포의 탐식작용 매개성 케모카인 수용체 발현 연구)

  • Jeong, Young-Sin;Byun, Hyang-Min;Shin, Jee-Young;Kim, Jung-Mogg;Chung, Hyung-Min;Oh, Yu-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.4
    • /
    • pp.281-286
    • /
    • 2003
  • To design gene deliver systems which can deliver higher amounts of genes into stem cells, we studied the expression of receptors involved in the receptor-mediated endocytosis of bone marrow stromal stem cells. Bone marrow was isolated from ICR mice, and bone marrow stromal stem cells were isolated based on their plastic adherence property. Several culture conditions were screened for effective and continuous culture of marrow stromal stem cells. MesenCult medium was finally used to cultivate marrow stromal stem cells in vitro. As candidate receptors, various chemokine receptors were studied. Both bone marrow cells ad marrow-derived stromal stem cells showed expression of CC chemokine receptors (CCR) and CXC chemokine receptors (CXCR). Marrow stromal stem cells showed higher expression of CCR5 ad CXCR4 chemokine receptors as compared to other types of chemokine receptors. Moreover, though the expression of chemokine receptors generally decreased in most chemokine receptors with the cultivaton of marrow stromal stem cells, CCR5 and CXCR4 chemokine receptors retained the higher level of receptor expressions over prolonged periods. These results suggest that the ligands exhibiting specific binding to CCR5 or CXCR4 might be used to modify gene delivery systems for increased levels of receptor-mediated gene delivery into stromal stem cells.

Structural Requirements for Modulating 4-Benzylpiperidine Carboxamides from Serotonin/Norepinephrine Reuptake Inhibitors to Triple Reuptake Inhibitors

  • Paudel, Suresh;Kim, Eunae;Zhu, Anlin;Acharya, Srijan;Min, Xiao;Cheon, Seung Hoon;Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.29 no.4
    • /
    • pp.392-398
    • /
    • 2021
  • In this study, we determined the effect of 24 different synthetic 4-benzylpiperidine carboxamides on the reuptake of serotonin, norepinephrine, and dopamine (DA), and characterized their structure-activity relationship. The compounds with a two-carbon linker inhibited DA reuptake with much higher potency than those with a three-carbon linker. Among the aromatic ring substituents, biphenyl and diphenyl groups played a critical role in determining the selectivity of the 4-benzylpiperidine carboxamides toward the serotonin transporter (SERT) and dopamine transporter (DAT), respectively. Compounds with a 2-naphthyl ring were found to exhibit a higher degree of inhibition on the norepinephrine transporter (NET) and SERT than those with a 1-naphthyl ring. A docking simulation using a triple reuptake inhibitor 8k and a serotonin/norepinephrine reuptake inhibitor 7j showed that the regions spanning transmembrane domain (TM)1, TM3, and TM6 form the ligand binding pocket. The compound 8k bound tightly to the binding pocket of all three monoamine reuptake transporters; however, 7j showed poor docking with DAT. Co-expression of DAT with the dopamine D2 receptor (D2R) significantly inhibited DA-induced endocytosis of D2R probably by reuptaking DA into the cells. Pretreatment of the cells with 8f, which is one of the compounds with good inhibitory activity on DAT, blocked DAT-induced inhibition of D2R endocytosis. In summary, this study identified critical structural features contributing to the selectivity of a molecule for each of the monoamine transporters, critical residues on the compounds that bound to the transporters, and the functional role of a DA reuptake inhibitor in regulating D2R function.

Transient activation of the MAP kinase signaling pathway by the forward signaling of EphA4 in PC12 cells

  • Shin, Jong-Dae;Gu, Chang-Kyu;Kim, Ji-Eun;Park, Soo-Chul
    • BMB Reports
    • /
    • v.41 no.6
    • /
    • pp.479-484
    • /
    • 2008
  • In the present study, we demonstrate that ephrin-A5 is able to induce a transient increase of MAP kinase activity in PC12 cells. However, the effects of ephrin-A5 on the MAP kinase signaling pathway are about three-fold less than that of EGF. In addition, we demonstrate that EphA4 is the only Eph member expressed in PC12 cells, and that tyrosine phosphorylation induced by ephrin-A5 treatment is consistent with the magnitude and longevity of MAP kinase activation. Experiments using the Ras dominant negative mutant N17Ras reveal that Ras plays a pivotal role in ephrin-A5-induced MAP kinase activation in PC12 cells. Importantly, we found that the EphA4 receptor is rapidly internalized by endocytosis upon engagement of ephrin-A5, leading to a subsequent reduction in the MAP kinase activation. Together, these data suggest a novel regulatory mechanism of differential Ras-MAP kinase signaling kineticsexhibited by the forward signaling of EphA4 in PC12 cells.

Ultrastructural studies of vitellogenesis in oocytes and follicle cells during oogenesis in female Protothaca (Notochione) jedoensis (Bivalvia: Veneridae)

  • Kang, Hee-Woong;Choi, Ki-Ho;Jun, Je-Cheon;Lee, Ki-Young;Park, Kwan-Ha
    • Animal cells and systems
    • /
    • v.14 no.4
    • /
    • pp.343-349
    • /
    • 2010
  • Ultrastructural studies of vitellogenesis in oocytes and follicle cells during oogenesis in female Protothaca (Notochione) jedoensis were investigated by histological and transmission electron microscope observations. In early vitellogenic oocytes, combined activities of the Golgi complex, mitochondria and rough endoplasmic reticulum in the cytoplasm are associated with autosynthetic vitellogenesis. Furthermore, at this time, many coated vesicles at the basal region of the oolemma of the oocyte lead to the formation of vesicles through endocytosis in the cytoplasm. Through the formation of the coated pits on oolemma during vitellogenesis, the uptake of extrafollicular precursors (nutritive materials) occurs in coated vesicles by endocytosis. Therefore, it is assumed that these exogenous materials are involved in heterosynthetic vitellogenesis. During late oogenesis, exogenous yolk precursors (yolk granules), lipid droplets and proteinaceous yolk granules are present in the cytoplasm of late vitellogenic oocytes. In mature oocytes, small yolk granules appear intermingled and form large mature yolk granules. Thus, two processes of vitellogenesis occur in oocytes by way of endogenous autosynthesis and exogenous heterosynthesis. The follicle cells attached to the oocytes appear to play an integral role in vitellogenesis in this study.