Browse > Article
http://dx.doi.org/10.14348/molcells.2014.0228

The Unique Mechanism of SNX9 BAR Domain for Inducing Membrane Tubulation  

Park, Joohyun (Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine)
Zhao, Haiyan (Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine)
Chang, Sunghoe (Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine)
Abstract
Sorting nexin 9 (SNX9) is a member of the sorting nexin family of proteins and plays a critical role in clathrinmediated endocytosis. It has a Bin-Amphiphysin-Rvs (BAR) domain which can form a crescent-shaped homodimer structure that induces deformation of the plasma membrane. While other BAR-domain containing proteins such as amphiphysin and endophilin have an amphiphatic helix in front of the BAR domain which plays a critical role in membrane penetration, SNX9 does not. Thus, whether and how SNX9 BAR domain could induce the deformation of the plasma membrane is not clear. The present study identified the internal putative amphiphatic stretch in the $1^{st}$ ${\alpha}$-helix of the SNX9 BAR domain and proved that together with the N-terminal helix ($H_0$) region, this internal putative amphiphatic stretch is critical for inducing membrane tubulation. Therefore, our study shows that SNX9 uses a unique mechanism to induce the tubulation of the plasma membrane which mediates proper membrane deformation during clathrinmediated endocytosis.
Keywords
amphiphatic helix; BAR domain; clathrin-mediated endocytosis; invagination; tubulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yarar, D., Waterman-Storer, C.M., and Schmid, S.L. (2007). SNX9 couples actin assembly to phosphoinositide signals and is required for membrane remodeling during endocytosis. Dev. Cell 13, 43-56.   DOI   ScienceOn
2 Zimmerberg, J., and Kozlov, M.M. (2006). How proteins produce cellular membrane curvature. Nat. Rev. Mol. Cell Biol. 7, 9-19.   DOI   ScienceOn
3 McMahon, H.T., and Gallop, J.L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590-596.   DOI   ScienceOn
4 Peter, B.J., Kent, H.M., Mills, I.G., Vallis, Y., Butler, P.J., Evans, P.R., and McMahon, H.T. (2004). BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303, 495-499.   DOI   ScienceOn
5 Ren, G., Vajjhala, P., Lee, J.S., Winsor, B., and Munn, A.L. (2006). The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol. Mol. Biol. Rev. 70, 37-120.   DOI   ScienceOn
6 Shin, N., Lee, S., Ahn, N., Kim, S.A., Ahn, S.G., YongPark, Z., and Chang, S. (2007). Sorting nexin 9 interacts with dynamin 1 and N-WASP and coordinates synaptic vesicle endocytosis. J. Biol. Chem. 282, 28939-28950.   DOI   ScienceOn
7 Shin, N., Ahn, N., Chang-Ileto, B., Park, J., Takei, K., Ahn, S.G., Kim, S.A., Di Paolo, G., and Chang, S. (2008). SNX9 regulates tubular invagination of the plasma membrane through interaction with actin cytoskeleton and dynamin 2. J. Cell Sci. 121, 1252-1263.   DOI   ScienceOn
8 Gallop, J.L., Walrant, A., Cantley, L.C., and Kirschner, M.W. (2013). Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proc. Natl. Acad. Sci. USA 110, 7193-7198.   DOI   ScienceOn
9 Soulet, F., Yarar, D., Leonard, M., and Schmid, S.L. (2005). SNX9 regulates dynamin assembly and is required for efficient clathrinmediated endocytosis. Mol. Biol. Cell 16, 2058-2067.   DOI   ScienceOn
10 Wang, Q., Navarro, M.V., Peng, G., Molinelli, E., Goh, S.L., Judson, B.L., Rajashankar, K.R., and Sondermann, H. (2009). Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc. Natl. Acad. Sci. USA 106, 12700-12705.   DOI   ScienceOn
11 Habermann, B. (2004). The BAR-domain family of proteins: a case of bending and binding? EMBO Rep. 5, 250-255.   DOI   ScienceOn
12 Itoh, T., and De Camilli, P. (2006). BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim. Biophys. Acta 1761, 897-912.   DOI   ScienceOn
13 Lin, Q., Lo, C.G., Cerione, R.A., and Yang, W. (2002). The Cdc42 target ACK2 interacts with sorting nexin 9 (SH3PX1) to regulate epidermal growth factor receptor degradation. J. Biol. Chem. 277, 10134-10138.   DOI   ScienceOn
14 Pylypenko, O., Lundmark, R., Rasmuson, E., Carlsson, S.R., and Rak, A. (2007). The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J. 26, 4788-4800.   DOI   ScienceOn
15 Low, C., Weininger, U., Lee, H., Schweimer, K., Neundorf, I., Beck-Sickinger, A.G., Pastor, R.W., and Balbach, J. (2008). Structure and dynamics of helix-0 of the N-BAR domain in lipid micelles and bilayers. Biophys. J. 95, 4315-4323.   DOI   ScienceOn
16 Lundmark, R., and Carlsson, S.R. (2003). Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. J. Biol. Chem. 278, 46772-46781.   DOI   ScienceOn
17 Lundmark, R., and Carlsson, S.R. (2009). SNX9 - a prelude to vesicle release. J. Cell Sci. 122, 5-11.   DOI   ScienceOn
18 Masuda, M., Takeda, S., Sone, M., Ohki, T., Mori, H., Kamioka, Y., and Mochizuki, N. (2006). Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J. 25, 2889-2897.   DOI   ScienceOn
19 Dawson, J.C., Legg, J.A., and Machesky, L.M. (2006). Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol. 16, 493-498.   DOI   ScienceOn
20 Childress, C., Lin, Q., and Yang, W. (2006). Dimerization is required for SH3PX1 tyrosine phosphorylation in response to epidermal growth factor signalling and interaction with ACK2. Biochem. J. 394, 693-698.   DOI   ScienceOn
21 Fernandes, F., Loura, L.M., Chichon, F.J., Carrascosa, J.L., Fedorov, A., and Prieto, M. (2008). Role of helix 0 of the N-BAR domain in membrane curvature generation. Biophys. J. 94, 3065-3073.   DOI   ScienceOn
22 Gallop, J.L., and McMahon, H.T. (2005). BAR domains and membrane curvature: bringing your curves to the BAR. Biochem. Soc. Symp. 2005, 223-231.
23 Howard, L., Nelson, K.K., Maciewicz, R.A., and Blobel, C.P. (1999). Interaction of the metalloprotease disintegrins MDC9 and MDC15 with two SH3 domain-containing proteins, endophilin I and SH3PX1. J. Biol. Chem. 274, 31693-31699.   DOI
24 Gallop, J.L., Jao, C.C., Kent, H.M., Butler, P.J., Evans, P.R., Langen, R., and McMahon, H.T. (2006). Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J. 25, 2898-2910.   DOI   ScienceOn
25 Futterer, K., and Machesky, L.M. (2007). "Wunder" F-BAR domains: going from pits to vesicles. Cell 129, 655-657.   DOI   ScienceOn
26 Wang, Q., Kaan, H.Y., Hooda, R.N., Goh, S.L., and Sondermann, H. (2008). Structure and plasticity of endophilin and sorting nexin 9. Structure 16, 1574-1587.   DOI   ScienceOn