• Title/Summary/Keyword: endocrine disrupts

Search Result 6, Processing Time 0.027 seconds

Evaluation of Lactic Acid Bacteria for the Resistance to Endocrine Disruptors

  • Kim, Su-Won;Min, Byung-Tae;Yoo, Min
    • Biomedical Science Letters
    • /
    • v.8 no.2
    • /
    • pp.95-99
    • /
    • 2002
  • Endocrine disruptors are chemicals which can be found in our normal daily life. They can be easily ingested through plastic food containers, pesticides, etc. They include DDT, bisphenol A, benzophenone and phenylphenol, etc. Endocrine disruptor can be very harmful and toxic because it disrupts the normal function of the endogenous endocrine system. It has been reported that endocrine disruptor can cause the fatal strike in reproductive system central nervous system and the other part of the body. We have examined if the growth of lactic acid bacteria could be resistant to the endocrine disruptor. We have used Lactobacillus delbruekii as an experimental strain and benzophenone and phenylphenol for the comparison purpose. Experiments included the evaluation of turbidity, absorbance and actual cell counts. Although Lactobacillus delbruekii showed the higher resistance to benzophenone than phenylphenol it was still resistant to both benzophenone and phenylphenol. Because the experimental concentrations of benzophenone and phenylphenol were so high to compare with the actual concentration we meet in daily life, Lactobacillus delbruekii was considered to be sufficient to survive in the environmental concentration of these endocrine disruptors. This study should contribute to the development of fermented beverage with beneficial effect by lactic acid bacteria.

  • PDF

Monitoring on Endocrine Disruptors in Commercial Agricultural Products in the Northern Area of Seoul(2007) (서울 강북지역 유통 농산물의 내분비계장애 추정농약의 잔류실태(2007))

  • Ha, Kwang-Tae;Park, Sung-Kyu;Cho, Tae-Hee;Han, Chang-Ho;Kim, Sung-Dan;Lee, Kyeng-A;Kim, Si-Jung;Jang, Jung-Im;Jo, Han-Bin;Choi, Byung-Hyun
    • Journal of Food Hygiene and Safety
    • /
    • v.24 no.2
    • /
    • pp.136-142
    • /
    • 2009
  • This study was carried out to investigate the current status of suspected endocrine disrupting pesticides among the agricultural products in northern area of Seoul in 2007. 3,026 samples was analyzed by multiresidue method. Detected Pesticide in 11 cases were procymidone, endosulfan, chlorothalonil, chlorpyrifos, cyermethrin, fenvalerate, hexaconazole, carbendazim, pendimethalin, permethrin, parathion and exceeded 7 cases of endosulfan, procymidone, carbendazim, chlorothalonil, chlorpyrifos, cypermethrin, fenvalerate in the maximum residue limits(MRLs). Procymidone, endosulfan, chlorothalonil and chlorpyrifos comprised up to 80.5% in detected pesticides. Among the 321 cases of detected agricultural products, 287 cases(89.4%) were vegetables, 25 cases (7.8%) were fruits, Others were 9 cases(2.8%).

ARYL HYDROCARBON- AND ESTROGEN-MEDIATED SIGNALS POSSIBLY CROSS TALK TO REGULATE CYP1A1 GENE EXPRESSION

  • Joung, Ki-Eun;Kim, Yeo-Woon;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.186-186
    • /
    • 2001
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways by enhancing ligand metabolism, altering hormone synthesis, down regulating receptor levels, and interfering with gene transcription. And TCDD-mediated gene transactivation via the AhR has been shown to be dependent upon estrogen receptor (ER) expression in human breast cancer cells.(omitted)

  • PDF

Effects of Endocrine Disrupting Chemicals on the Nervous System (내분비계 교란물질이 신경계에 미치는 영향)

  • Shin, Hyun Seung;Wi, Jae Ho;Lee, Seung Hyun;Choi, Soo Min;Jung, Eui-Man
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.70-77
    • /
    • 2022
  • Endocrine disrupting chemicals (EDCs) have been attracting significant attention in modern society, owing to the increased incidence rate of various diseases along with population growth. EDCs are found in many commercial products, including some plastic bottles and containers, detergents, liners of metal food cans, flame retardants, food, toys, cosmetics, and pesticides. EDCs have a hormonal effect on the human body, which disrupts the endocrine system, notably affecting sexual differentiation and normal reproduction, and can trigger cancer as well. Recently, the association between neurological diseases and EDCs has become a hot topic of research in the field of neuroscience. Considering that EDCs negatively affect not only neuronal proliferation and neurotransmission but also the formation of the neuronal networks, EDCs may induce neurodevelopmental disorders, such as autism spectrum disorders and attention-deficit/hyperactivity disorder as well as neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In light of these potentially deleterious outcomes, important efforts have been underway to minimize the exposure to EDCs through appropriate regulations and policies around the world, but chemicals that have not yet been associated with endocrine disrupting properties are still in wide use. Therefore, more epidemiological investigations and research are needed to fully understand the effects of EDCs on the nervous system.

ARYL HYDROCARBON- AND ESTROGEN-MEDIATED SIGNALS POSSIBLY CROSS TALK TO REGULATE CYP1A1 GENE EXPRESSION

  • Joung, Ki-Eun;Kim, Yeo-Woon;Min, Kyung-Nan;Sheen, Yhun-Yhong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2001.11a
    • /
    • pp.112-112
    • /
    • 2001
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is an environmental toxin that activates the aryl hydrocarbon receptor (AhR) and disrupts multiple endocrine signaling pathways by enhancing ligand metabolism, altering hormone synthesis, down regulating receptor levels, and interfering with gene transcription. And TCDD-mediated gene transactivation via the AhR has been shown to be dependent upon estrogen receptor (ER) expression in human breast cancer cells. In the present study, we have examined the effect of natural estrogen, phytoestrognes and environmental estrogens on the regulation of CYP1A1 gene expression in MCF-7 human breast cancer cell line. that ER and AhR are co-expressed. pCYP1A1 -luc reporter gene was transiently transfected into MCF-7 cells. These cells were treated with various chemicals and then luciferase assay was carried out. 17be1a-estradiol significantly inhibited TCDD stimulated luciferase activity dose dependently and this inhibition was partially recovered by concomitant treatment of tamoxifen. 17beta-estradiol metabolites, 2-hydroxyestradiol and 16alpha-estriol resulted in less potent inhibitory effect than estradiol and synthetic estrogen, diethylstilbestrol (DES) showed no effect on CYP1A1 gene expression. This study demonstrated that estrogen down-regulated TCDD stimulated CYP1A1 expression via ER mediation. And we have found out that several flavonoids such as genistein, kaempferol, daidzein, naringenin, and alkylphenols such as nonylphenol, 4-octylphenol and resveratrol also inhibited TCDD induced CYP1A1 expression like estrogen.

  • PDF

Effects of Bisphenol A on the Placental Function and Reproduction in Rats (Bisphenol A가 흰쥐의 태반 기능과 출산에 미치는 영향)

  • Lee, Chae-Kwan;Kim, Seog-Hyun;Moon, Deog-Hwan;Kim, Jeong-Ho;Son, Byung-Chul;Kim, Dae-Hwan;Lee, Chang-Hee;Kim, Hwi-Dong;Kim, Jung-Won;Kim, Jong-Eun;Lee, Chae-Un
    • Journal of Preventive Medicine and Public Health
    • /
    • v.38 no.3
    • /
    • pp.330-336
    • /
    • 2005
  • Objectives : The aim of this study was to investigate the effects of bisphenol A (BPA), an estrogen-like environmental endocrine disrupter, on the placental function and reproduction in rats. The mRNA levels of the placental prolactin-growth hormone(PRL-GH) gene family, placental trophoblast cell frequency and reproductive data were analyzed. Methods : The pregnancies of F344 Fisher rats ($160g{\pm}20g$) were detected by the presence of the copulatory plug or sperm in the vaginal smear, which marked Day 0 of pregnancy. Pregnant rats were divided into three groups. The control group was intraperitoneally injected with a sesame oil vehicle. The two remaining groups were injected with 50 or 500 mg/kg B.W/day of BPA, resuspended in sesame oil, on either days 7 to 11 or 16 to 20 of pregnancy, with the rats sacrificed on either day 11 or 20, respectively. The mRNA levels of PRL-GH and Pit-1a and b isotype genes were analyzed by Northern blot hybridization and reverse transcription-polymerase chain reaction. The hormone concentrations were analyzed by radioimmunoassay, and the frequency of the placental trophoblast cells observed by a histochemical study. Reproductive data, such as the placental weight and litter size, were surveyed on day 20. The fetal weight was surveyed for 4 weeks after birth. A statistical analysis was carried out using the SAS program (version 8.1). Results : The mRNA levels of the PRL-GH gene family, such as placental lactogen I, Iv and II, prolactin like protein A, C and Cv, and decidual prolactin-related protein were significantly reduced due to BPA exposure. The mRNA levels of the Pit-1a and b isotype genes, which induce the expression of the PRL-GH gene family in the rat placenta, were also reduced due to BPA exposure. The PL-Iv and PL-II concentrations were reduced in the BPA exposed group. During the middle to last stage of pregnancy (Days 11-20), a high dose of BPA exposure reduced the frequency of spongiotrophoblast cells, which are responsible for the secretion of the PRL-GH hormones. Reproductive data, such as the placental and fetal weights and the litter size, were reduced, but that of the pregnancy period was extended in the BPA exposed compared to the control group. Conclusions : BPA disrupts the placental functions in rats, which leads to reproductive disorders.