Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.1.70

Effects of Endocrine Disrupting Chemicals on the Nervous System  

Shin, Hyun Seung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Wi, Jae Ho (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Lee, Seung Hyun (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Choi, Soo Min (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Jung, Eui-Man (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.32, no.1, 2022 , pp. 70-77 More about this Journal
Abstract
Endocrine disrupting chemicals (EDCs) have been attracting significant attention in modern society, owing to the increased incidence rate of various diseases along with population growth. EDCs are found in many commercial products, including some plastic bottles and containers, detergents, liners of metal food cans, flame retardants, food, toys, cosmetics, and pesticides. EDCs have a hormonal effect on the human body, which disrupts the endocrine system, notably affecting sexual differentiation and normal reproduction, and can trigger cancer as well. Recently, the association between neurological diseases and EDCs has become a hot topic of research in the field of neuroscience. Considering that EDCs negatively affect not only neuronal proliferation and neurotransmission but also the formation of the neuronal networks, EDCs may induce neurodevelopmental disorders, such as autism spectrum disorders and attention-deficit/hyperactivity disorder as well as neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. In light of these potentially deleterious outcomes, important efforts have been underway to minimize the exposure to EDCs through appropriate regulations and policies around the world, but chemicals that have not yet been associated with endocrine disrupting properties are still in wide use. Therefore, more epidemiological investigations and research are needed to fully understand the effects of EDCs on the nervous system.
Keywords
Endocrine disrupting chemicals; neurological diseases; neurodevelopmental disorders; neurodegenerative diseases; nervous system;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Morgan, M., Deoraj, A., Felty, Q. and Roy, D. 2017. Environmental estrogen-like endocrine disrupting chemicals and breast cancer. Mol. Cell. Endocrinol. 457, 89-102.   DOI
2 Tran, D. N., Jung, E. M., Yoo, Y. M. and Jeung, E. B. 2020. 4-tert-Octylphenol exposure disrupts brain development and subsequent motor, cognition, social, and behavioral functions. Oxid. Med. Cell Longev. 2020, 8875604.
3 Kassotis, C. D., Vandenberg, L. N., Demeneix, B. A., Porta, M., Slama, R. and Trasande, L. 2020. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol. 8, 719-730.   DOI
4 Kitazawa, M., Anantharam, V., Kanthasamy, A. and Kanthasamy, A. G. 2004. Dieldrin promotes proteolytic cleavage of poly(ADP-ribose) polymerase and apoptosis in dopaminergic cells: protective effect of mitochondrial anti-apoptotic protein Bcl-2. Neurotoxicology 25, 589-598.   DOI
5 Miyazaki, I., Isooka, N., Imafuku, F., Sun, J., Kikuoka, R., Furukawa, C. and Asanuma, M. 2020. Chronic systemic exposure to low-dose Rotenone induced central and peripheral neuropathology and motor deficits in mice: Reproducible animal model of Parkinson's disease. Int. J. Mol. Sci. 21,
6 Barbeau, A., Dallaire, L., Buu, N. T., Poirier, J. and Rucinska, E. 1985. Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens. Life Sci. 37, 1529-1538.   DOI
7 Parron, T., Requena, M., Hernandez, A. F. and Alarcon, R. 2011. Association between environmental exposure to pesticides and neurodegenerative diseases. Toxicol. Appl. Pharmacol. 256, 379-385.   DOI
8 Kloas, W., Lutz, I. and Einspanier, R. 1999. Amphibians as a model to study endocrine disruptors: II. Estrogenic activity of environmental chemicals in vitro and in vivo. Sci. Total Environ. 225, 59-68.   DOI
9 Konjuh, C., Garcia, G., Lopez, L., de Duffard, A. M., Brusco, A. and Duffard, R. 2008. Neonatal hypomyelination by the herbicide 2,4-dichlorophenoxyacetic acid. Chemical and ultrastructural studies in rats. Toxicol. Sci. 104, 332-340.   DOI
10 Latchney, S. E., Lioy, D. T., Henry, E. C., Gasiewicz, T. A., Strathmann, F. G., Mayer-Proschel, M. and Opanashuk, L. A. 2011. Neural precursor cell proliferation is disrupted through activation of the aryl hydrocarbon receptor by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Stem Cells Dev. 20, 313-326.   DOI
11 Nair, A., Dureja, P. and Pillai, M. K. 1992. Aldrin and dieldrin residues in human fat, milk and blood serum collected from Delhi. Hum. Exp. Toxicol. 11, 43-45.   DOI
12 Nickel, S. and Mahringer, A. 2014. The xenoestrogens ethinylestradiol and bisphenol A regulate BCRP at the bloodbrain barrier of rats. Xenobiotica 44, 1046-1054.   DOI
13 Okada, M., Makino, A., Nakajima, M., Okuyama, S., Furukawa, S. and Furukawa, Y. 2010. Estrogen stimulates proliferation and differentiation of neural stem/progenitor cells through different signal transduction pathways. Int. J. Mol. Sci. 11, 4114-4123.   DOI
14 Paduch, D. A. 2006. Testicular cancer and male infertility. Curr. Opin. Urol. 16, 419-427.   DOI
15 Ruszkiewicz, J. A., Li, S., Rodriguez, M. B. and Aschner, M. 2017. Is Triclosan a neurotoxic agent? J. Toxicol. Environ. Health B Crit. Rev. 20, 104-117.   DOI
16 Polanska, K., Jurewicz, J. and Hanke, W. 2013. Review of current evidence on the impact of pesticides, polychlorinated biphenyls and selected metals on attention deficit / hyperactivity disorder in children. Int. J. Occup. Med. Environ. Health 26, 16-38.   DOI
17 Richardson, J. R., Caudle, W. M., Wang, M., Dean, E. D., Pennell, K. D. and Miller, G. W. 2006. Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease. FASEB J. 20, 1695-1697.   DOI
18 Rochester, J. R. and Bolden, A. L. 2015. Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ. Health Perspect. 123, 643-650.   DOI
19 Shutoh, Y., Takeda, M., Ohtsuka, R., Haishima, A., Yamaguchi, S., Fujie, H., Komatsu, Y., Maita, K. and Harada, T. 2009. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J. Toxicol. Sci. 34, 469-482.   DOI
20 Lv, S., Wu, C., Lu, D., Qi, X., Xu, H., Guo, J., Liang, W., Chang, X., Wang, G. and Zhou, Z. 2016. Birth outcome measures and prenatal exposure to 4-tert-Octylphenol. Environ. Pollut. 212, 65-70.   DOI
21 Stevant, I. and Nef, S. 2019. Genetic control of gonadal sex determination and development. Trends Genet. 35, 346-358.   DOI
22 Pang, Q., Li, Y., Meng, L., Li, G., Luo, Z. and Fan, R. 2019. Neurotoxicity of BPA, BPS, and BPB for the hippocampal cell line (HT-22): An implication for the replacement of BPA in plastics. Chemosphere 226, 545-552.   DOI
23 Rattan, S., Zhou, C., Chiang, C., Mahalingam, S., Brehm, E. and Flaws, J. A. 2017. Exposure to endocrine disruptors during adulthood: consequences for female fertility. J. Endocrinol. 233, R109-R129.   DOI
24 Song, C., Kanthasamy, A., Anantharam, V., Sun, F. and Kanthasamy, A. G. 2010. Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration. Mol. Pharmacol. 77, 621-632.   DOI
25 Sukjamnong, S., Thongkorn, S., Kanlayaprasit, S., Saeliw, T., Hussem, K., Warayanon, W., Hu, V. W., Tencomnao, T. and Sarachana, T. 2020. Prenatal exposure to bisphenol A alters the transcriptome-interactome profiles of genes associated with Alzheimer's disease in the offspring hippocampus. Sci. Rep. 10, 9487.   DOI
26 Tran, D. N., Jung, E. M., Yoo, Y. M., Lee, J. H. and Jeung, E. B. 2020. Perinatal exposure to Triclosan results in abnormal brain development and behavior in mice. Int. J. Mol. Sci. 21, 4009.   DOI
27 Yang, J., Huang, Q., Liu, H., Zhou, X., Huang, Z., Peng, Q. and Liu, C. 2020. 4-Nonylphenol and 4-tert-Octylphenol induce anxiety-related behaviors through alternation of 5-HT receptors and transporters in the prefrontal cortex. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 230, 108701.   DOI
28 Boockfor, F. R. and Blake, C. A. 1997. Chronic administration of 4-tert-Octylphenol to adult male rats causes shrinkage of the testes and male accessory sex organs, disrupts spermatogenesis, and increases the incidence of sperm deformities. Biol. Reprod. 57, 267-277.   DOI
29 Weisskopf, M. G., Knekt, P., O'Reilly, E. J., Lyytinen, J., Reunanen, A., Laden, F., Altshul, L. and Ascherio, A. 2010. Persistent organochlorine pesticides in serum and risk of Parkinson disease. Neurology 74, 1055-1061.   DOI
30 Wuttke, W., Jarry, H. and Seidlova-Wuttke, D. 2010. Definition, classification and mechanism of action of endocrine disrupting chemicals. Hormones (Athens) 9, 9-15.   DOI
31 Ye, L., Hu, Z., Wang, H., Zhu, H., Dong, Z., Jiang, W., Zhao, H., Li, N., Mi, W., Wang, W. and Hu, X. 2015. Tris-(2,3-Dibromopropyl) Isocyanurate, a new emerging pollutant, impairs cognition and provokes depression-like behaviors in adult rats. PLoS One 10, e0140281.   DOI
32 Yin, N., Liang, X., Liang, S., Liang, S., Yang, R., Hu, B., Cheng, Z., Liu, S., Dong, H., Liu, S. and Faiola, F. 2019. Embryonic stem cell- and transcriptomics-based in vitro analyses reveal that bisphenols A, F and S have similar and very complex potential developmental toxicities. Ecotoxicol. Environ. Saf. 176, 330-338.   DOI
33 Zhou, X., Yang, Z., Luo, Z., Li, H. and Chen, G. 2019. Endocrine disrupting chemicals in wild freshwater fishes: Species, tissues, sizes and human health risks. Environ. Pollut. 244, 462-468.   DOI
34 Darras, V. M. 2008. Endocrine disrupting polyhalogenated organic pollutants interfere with thyroid hormone signalling in the developing brain. Cerebellum 7, 26-37.   DOI
35 Adgent, M. A. and Rogan, W. J. 2015. Triclosan and prescription antibiotic exposures and enterolactone production in adults. Environ. Res. 142, 66-71.   DOI
36 Anway, M. D., Cupp, A. S., Uzumcu, M. and Skinner, M. K. 2005. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308, 1466-1469.   DOI
37 Collins, L. L., Williamson, M. A., Thompson, B. D., Dever, D. P., Gasiewicz, T. A. and Opanashuk, L. A. 2008. 2,3,7,8-Tetracholorodibenzo-p-dioxin exposure disrupts granule neuron precursor maturation in the developing mouse cerebellum. Toxicol. Sci. 103, 125-136.   DOI
38 Dickerson, S. M. and Gore, A. C. 2007. Estrogenic environmental endocrine-disrupting chemical effects on reproductive neuroendocrine function and dysfunction across the life cycle. Rev. Endocr. Metab. Disord. 8, 143-159.   DOI
39 Gordon, M. D. and Nusse, R. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J. Biol. Chem. 281, 22429-22433.   DOI
40 Hatcher-Martin, J. M., Gearing, M., Steenland, K., Levey, A. I., Miller, G. W. and Pennell, K. D. 2012. Association between polychlorinated biphenyls and Parkinson's disease neuropathology. Neurotoxicology 33, 1298-1304.   DOI
41 Bian, Q., Qian, J., Xu, L., Chen, J., Song, L. and Wang, X. 2006. The toxic effects of 4-tert-Octylphenol on the reproductive system of male rats. Food Chem. Toxicol. 44, 1355-1361.   DOI
42 Liu, Y. Y. and Brent, G. A. 2018. Thyroid hormone and the brain: Mechanisms of action in development and role in protection and promotion of recovery after brain injury. Pharmacol. Ther. 186, 176-185.   DOI
43 Axelstad, M., Boberg, J., Vinggaard, A. M., Christiansen, S. and Hass, U. 2013. Triclosan exposure reduces thyroxine levels in pregnant and lactating rat dams and in directly exposed offspring. Food Chem. Toxicol. 59, 534-540.   DOI
44 Beitz, J. M. 2014. Parkinson's disease: a review. Front. Biosci. (Schol Ed) 6, 65-74.   DOI
45 Calaf, G. M., Ponce-Cusi, R., Aguayo, F., Munoz, J. P. and Bleak, T. C. 2020. Endocrine disruptors from the environment affecting breast cancer. Oncol. Lett. 20, 19-32.
46 Colborn, T., vom Saal, F. S. and Soto, A. M. 1993. Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ. Health Perspect. 101, 378-384.   DOI
47 Kundakovic, M., Gudsnuk, K., Franks, B., Madrid, J., Miller, R. L., Perera, F. P. and Champagne, F. A. 2013. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc. Natl. Acad. Sci. USA. 110, 9956-9961.   DOI
48 Blake, C. A. and Boockfor, F. R. 1997. Chronic administration of the environmental pollutant 4-tert-Octylphenol to adult male rats interferes with the secretion of luteinizing hormone, follicle-stimulating hormone, prolactin, and testosterone. Biol. Reprod. 57, 255-266.   DOI
49 Bortolotto, V. C., Pinheiro, F. C., Araujo, S. M., Poetini, M. R., Bertolazi, B. S., de Paula, M. T., Meichtry, L. B., de Almeida, F. P., de Freitas Couto, S., Jesse, C. R. and Prigol, M. 2018. Chrysin reverses the depressive-like behavior induced by hypothyroidism in female mice by regulating hippocampal serotonin and dopamine. Eur. J. Pharmacol. 822, 78-84.   DOI
50 Bulun, S. E., Yilmaz, B. D., Sison, C., Miyazaki, K., Bernardi, L., Liu, S., Kohlmeier, A., Yin, P., Milad, M. and Wei, J. 2019. Endometriosis. Endocr. Rev. 40, 1048-1079.   DOI
51 Mello-da-Silva, C. A. and Fruchtengarten, L. 2005. [Environmental chemical hazards and child health]. J. Pediatr. (Rio J) 81, S205-211.   DOI
52 Ruan, T., Wang, Y., Wang, C., Wang, P., Fu, J., Yin, Y., Qu, G., Wang, T. and Jiang, G. 2009. Identification and evaluation of a novel heterocyclic brominated flame retardant tris(2,3-dibromopropyl) isocyanurate in environmental matrices near a manufacturing plant in southern China. Environ. Sci. Technol. 43, 3080-3086.   DOI
53 Jang, Y. J., Park, H. R., Kim, T. H., Yang, W. J., Lee, J. J., Choi, S. Y., Oh, S. B., Lee, E., Park, J. H., Kim, H. P., Kim, H. S. and Lee, J. 2012. High dose bisphenol A impairs hippocampal neurogenesis in female mice across generations. Toxicology 296, 73-82.   DOI
54 Koriem, K. M. M., Arbid, M. S. S. and Gomaa, N. E. 2018. The role of chlorogenic acid supplementation in anemia and mineral disturbances induced by 4-tert-Octylphenol toxicity. J. Diet. Suppl. 15, 55-71.   DOI
55 Catanese, M. C. and Vandenberg, L. N. 2017. Bisphenol S (BPS) Alters maternal behavior and brain in mice exposed during pregnancy/lactation and their daughters. Endocrinology 158, 516-530.
56 Crews, D. and Gore, A. C. 2011. Life imprints: living in a contaminated world. Environ. Health Perspect. 119, 1208-1210.   DOI
57 Dong, Z., Hu, Z., Zhu, H., Li, N., Zhao, H., Mi, W., Jiang, W., Hu, X. and Ye, L. 2015. Tris-(2,3-dibromopropyl) isocyanurate induces depression-like behaviors and neurotoxicity by oxidative damage and cell apoptosis in vitro and in vivo. J. Toxicol. Sci. 40, 701-709.   DOI
58 Kajta, M. and Wojtowicz, A. K. 2013. Impact of endocrine-disrupting chemicals on neural development and the onset of neurological disorders. Pharmacol. Rep. 65, 1632-1639.   DOI
59 Davis, D. L., Bradlow, H. L., Wolff, M., Woodruff, T., Hoel, D. G. and Anton-Culver, H. 1993. Medical hypothesis: xenoestrogens as preventable causes of breast cancer. Environ. Health Perspect. 101, 372-377.   DOI
60 Diamanti-Kandarakis, E., Bourguignon, J. P., Giudice, L. C., Hauser, R., Prins, G. S., Soto, A. M., Zoeller, R. T. and Gore, A. C. 2009. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr. Rev. 30, 293-342.   DOI
61 Dietert, R. R. 2012. Misregulated inflammation as an outcome of early-life exposure to endocrine-disrupting chemicals. Rev. Environ. Health 27, 117-131.   DOI
62 Food and Drug Adminnistration, H. H. S. 2016. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Final rule. Fed. Regist. 81, 61106-61130.
63 Geschwind, D. H. and Levitt, P. 2007. Autism spectrum disorders: developmental disconnection syndromes. Curr. Opin. Neurobiol. 17, 103-111.   DOI
64 Gilbert, M. E., Rovet, J., Chen, Z. and Koibuchi, N. 2012. Developmental thyroid hormone disruption: prevalence, environmental contaminants and neurodevelopmental consequences. Neurotoxicology 33, 842-852.   DOI
65 Hu, F., Liang, W., Zhang, L., Wang, H., Li, Z. and Zhou, Y. 2021. Hyperactivity of basolateral amygdala mediates behavioral deficits in mice following exposure to bisphenol A and its analogue alternative. Chemosphere 287, 132044.
66 Jurewicz, J., Polanska, K. and Hanke, W. 2013. Exposure to widespread environmental toxicants and children's cognitive development and behavioral problems. Int. J. Occup. Med. Environ. Health 26, 185-204.   DOI
67 Garber, K. 2007. Neuroscience. Autism's cause may reside in abnormalities at the synapse. Science 317, 190-191.   DOI
68 Harrison, P. T., Holmes, P. and Humfrey, C. D. 1997. Reproductive health in humans and wildlife: are adverse trends associated with environmental chemical exposure? Sci. Total Environ. 205, 97-106.   DOI
69 Jorgenson, J. L. 2001. Aldrin and dieldrin: a review of research on their production, environmental deposition and fate, bioaccumulation, toxicology, and epidemiology in the United States. Environ. Health Perspect. 109 Suppl 1, 113-139.
70 Kanthasamy, A. G., Kitazawa, M., Kanthasamy, A. and Anantharam, V. 2005. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis. Neurotoxicology 26, 701-719.   DOI
71 Jiao, H., Yan, Z., Ma, Q., Li, X., Jiang, Y., Liu, Y. and Chen, J. 2019. Influence of Xiaoyaosan on depressive-like behaviors in chronic stress-depressed rats through regulating tryptophan metabolism in hippocampus. Neuropsychiatr. Dis. Treat. 15, 21-31.
72 Kamel, F., Umbach, D. M., Bedlack, R. S., Richards, M., Watson, M., Alavanja, M. C., Blair, A., Hoppin, J. A., Schmidt, S. and Sandler, D. P. 2012. Pesticide exposure and amyotrophic lateral sclerosis. Neurotoxicology 33, 457-462.   DOI
73 Kim, S. K., Lee, H. J., Yang, H., Kim, H. S. and Yoon, Y. D. 2004. Prepubertal exposure to 4-tert-Octylphenol induces apoptosis of testicular germ cells in adult rat. Arch. Androl. 50, 427-441.   DOI
74 Kitazawa, M., Anantharam, V. and Kanthasamy, A. G. 2001. Dieldrin-induced oxidative stress and neurochemical changes contribute to apoptopic cell death in dopaminergic cells. Free Radic. Biol. Med. 31, 1473-1485.   DOI
75 Lim, C. K., Kim, S. K., Ko, D. S., Cho, J. W., Jun, J. H., An, S. Y., Han, J. H., Kim, J. H. and Yoon, Y. D. 2009. Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons. Toxicology 264, 145-154.   DOI
76 Knez, J. 2013. Endocrine-disrupting chemicals and male reproductive health. Reprod. Biomed. Online 26, 440-448.   DOI
77 Liang, X., Yin, N., Liang, S., Yang, R., Liu, S., Lu, Y., Jiang, L., Zhou, Q., Jiang, G. and Faiola, F. 2020. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food Chem. Toxicol. 135, 111015.   DOI