• Title/Summary/Keyword: endocrine disruptor

Search Result 137, Processing Time 0.02 seconds

Electrochemical Determination of Bisphenol A Concentrations using Nanocomposites Featuring Multi-walled Carbon Nanotube, Polyelectrolyte and Tyrosinase (다중벽 탄소 나노 튜브, 전도성고분자 및 티로시나아제 효소로 구성된 나노복합체를 이용한 비스페놀A 맞춤형의 전기화학적 검출법)

  • Ku, Nayeong;Byeon, Ayeong;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.684-689
    • /
    • 2021
  • In this paper, we develop a cost effective and disposable voltammetric sensing platform involving screen-printed carbon electrode (SPCE) modified with the nanocomposites composed of multi-walled carbon nanotubes, polyelectrolyte, and tyrosinase for bisphenol A. This is known as an endocrine disruptor which is also related to chronic diseases such as obesity, diabetes, cardiovascular and female reproductive diseases, precocious puberty, and infertility. A negatively charged oxidized multi-walled carbon nanotubes (MWCNTs) wrapped with a positively charged polyelectrolyte, e.g., polydiallyldimethylammonium, was first wrapped with a negatively charged tyrosinae layer via electrostatic interaction and assembled onto oxygen plasma treated SPCE. The nanocomposite modified SPCE was then immersed into different concentrations of bisphenol A for a given time where the tyrosinase reacted with OH group in the bisphenol A to produce the product, 4,4'-isopropylidenebis(1,2-benzoquinone). Cyclic and differential pulse voltammetries at the potential of -0.08 V vs. Ag/AgCl was employed and peak current changes responsible to the reduction of 4,4'-isopropylidenebis(1,2-benzoquinone) were measured which linearly increased with respect to the bisphenol A concentration. In addition, the SPCE based sensor showed excellent selectivity toward an interferent agent, bisphenol S, which has a very similar structure. Finally, the sensor was applied to the analysis of bisphenol A present in an environmental sample solution prepared in our laboratory.

Uptake and Distribution of Bisphenol A and Its Metabolites in Lettuce Grown in Sandy Loam and Loam Soil

  • Cho, Il Kyu;Jeon, Yong-Bae;Oh, Young Goun;Rahman, Md. Musfiqur;Kim, Won-Il;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.375-383
    • /
    • 2020
  • BACKGROUND: Bisphenol A (BPA) is a chemical widely used in polycarbonate plastics, epoxy resins. BPA is an endocrine disruptor. Residue of BPA in agricultural environments is a major concern. The objective of this study was to understand the characteristics of the uptake and distribution of BPA and its metabolites introduced into the agricultural environment to crops, and to use it as basic data for further research on reduction of BPA in agricultural products. METHODS AND RESULTS: This study established the analysis method of BPA and its metabolites in soil and crops, and estimated the intake of BPA and its metabolites from lettuce (Lactuca sativa) grown in sandy loam and loam soil, which are representative soils in Korea. The two major metabolites of BPA were 4-hydroxyacetophenone (4-HAP) and 4-hydroxybenzoic acid (4-HBA). BPA, 4-HAP and 4-HBA have been analyzed by using liquid chromatography tandem mass spectrometry (LC-MS/MS). These substances were detected in sandy loam and loam soil, indicating that certain portions of BPA were converted to 4-HAP and 4-HBA in the soil; however, it was observed that only 4-HBA migrated to lettuce through the roots into crops. CONCLUSION: The uptake residues showed the BPA and 4-HAP were not detected in lettuces grown on sandy loam (SL) and loam (L) soil treatments that were applied with of 10 ng/g, 50 ng/kg and 500 ng/g of BPA. However, the 4-HBA was detected at the level of 7 ng/g and 11 ng/g in the lettuce grown in sandy loam and loam soil that were treated with the 500 ng/g of BPA, respectively, while the 8 ng/g of 4-HBA was measured in the lettuce cultivated in the loam that was treated with 100 ng/g of BPA. This result presents that the BPA persisting in the soil of the pot was absorbed through the lettuce roots and then distributed in the lettuce leaves at the converted form of 4-HBA, what is the oxidative metabolite of BPA.

Recent Studies on Natural Products that Improve Browning (Browning 촉진에 관여하는 최근 천연물의 동향)

  • Lee, Eunbi;Nam, Ju-Ock
    • Journal of Life Science
    • /
    • v.31 no.11
    • /
    • pp.1037-1045
    • /
    • 2021
  • The prevalence of obesity is increasing worldwide, and since obesity is associated with dietary factors and sedentary lifestyles, it is a disease that is readily developing in the modern population. Because obesity is accompanied by serious complications such as diabetes and cardiovascular disease, prevention and treatment are important. Currently, drugs such as liraglutide and phentermine are used to treat obesity by suppressing appetite and inducing gastrointestinal motility delay. However, various side effects may occur, including thyroid cancer, cardiovascular problems, and central nervous system disorders. Therefore, to explore an obesity treatment method with relatively few side effects, a method known as "fat browning" was introduced to change white adipose tissue into brown adipose tissue to increase energy consumption. Ongoing studies are attempting to find effective natural substances to safely induce browning. Many natural substances have been identified. The induction of browning by treatment with natural substances generally involves three mechanisms: positive control of browning-inducing factors, inhibition of differentiation into white adipose tissue, and the activation of mechanisms related to browning. In this study, we describe plant extracts with known browning-inducing effects, such as strawberry, black raspberry, cinnamomum cassia, and Ecklonia stolonifera extracts. We also summarize the underlying mechanisms of action identified thus far, including the signaling pathway mediated by these extracts to induce browning. Furthermore, the effects of brown adipose tissue generated through browning on heart disease as an endocrine organ disruptor are discussed.

Determination of Phthalates Compounds in the Ambient Atmosphere (I) - Evaluation of a Measurement Method and its Application to a Field Study - (환경대기 중 프탈레이트 화합물의 농도 측정 (I) - 측정방법 평가와 현장 적용 -)

  • Hwang, Yoon-Jung;Park, Young-Hwa;Seo, Young-Kyo;Seo, Gwang-Kyo;Baek, Sung-Ok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.443-454
    • /
    • 2010
  • Phthalate compounds are widely used as plasticizers in polyvinyl chlororide (PVC) resins and other industrial consumer products, and some of them are known to be endocrine disruptors. In Korea, a number of studies have been carried out for the measurement of phthalates in consumer products and drinking water. However, no data are available for those compounds in the ambient air where the general public are routinely exposed. In this study, we evaluated sampling and analytical methods for the determination of phthalates in the ambient atmosphere. A wide range of phthalates compounds were included in the target analytes, which are dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP). Most of samples were collected using a high volume sampler with a PUF/XAD-2 column/quartz fiber filter and then analyzed by GC/MS. Some of samples were simultaneously collected on XAD-2 using a low-volume sampler, together with high-volume samples. The analytical method applied in this study showed good repeatability and linearity. Quantitative detection limits were estimated from 0.60 to 17.84 ng/$m^3$ in air, depending on individual compounds. The field measurements were carried out at 3 sites located in Sihwa- Banwall industrial areas and a suburban area from January 2007 to November 2007. From the field experiments, DEHP, DMP and DBP appeared to be the most abundant compounds in the ambient air. It was also found that DMP, DEP and DBP were mainly distributed in the vapor phase, while BBP, DEHP and DOP were predominantly associated with the particulate phase. The concentrations of DEHP and DMP in the industrial areas ranged from 45.7 to 1,012.7 ng/$m^3$ and from 7.7 to 375.1 ng/$m^3$, respectively. Overall, the high-volume sampling method was demonstrated to be superior to the low-volume method for the determination of phthalates in the ambient atmosphere.

Effects of Bisphenol A to interspecific hybrids between marine medaka Oryzias dancena and javanese medaka O. javanicus (바다송사리, Oryzias dancena와 자바송사리, O. javanicus 간 잡종에 대한 비스페놀 A의 효과)

  • Kim, Bong-Seok;Song, Ha-Yeun;Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • Bisphenol A (BPA) is mainly used in the production of epoxy resins and polycarbonate plastics, which is a known endocrine disruptor and acutely toxic to aquatic organisms. In this study, estrogenic effect of BPA was investigated on hybrid between Oryzias dancena and O. javanicus (ODJ). ODJ were exposed to BPA of various concentrations (eg. 2.5 mg/L, 5.0 mg/L and 10.0 mg/L) for 56 days. The growth rate, abnormality and the ratio of female and male were observed in test group and control group. As a result, the growth was $14.7{\pm}2.0$ mm in total length (TL) in 2.5 mg/L, $13.7{\pm}2.5$ mm in 5.0 mg/L, $12.8{\pm}2.5$ mm in 10.0 mg/L in test group while it was $18.0{\pm}1.2$ mm in TL in control group which was not treated with bisphenol A. The result showed that the growth decreased as the concentration of BPA increased. The abnormality rate was 13.6% in control group, 65.4% in 2.5 mg/L, 81.3% in 5.0 mg/L and 98.1 % in 10.0 mg/L which showed increase in abnormality as an increase of BPA concentration. As a result of analyzing ratio of sex in the test group and control group, 6.0% was examined to be interspecific in controls, 76.9% in 2.5 mg/L and 100.0% in 5.0 mg/L and 10.0 mg/L. In conclusion, these results suggest that BPA has estrogenic effect on ODJ.

Studies on Antioxidant, Anti-inflammatory and Whitening Effects of Oriental Herbal Extracts (Mix) including Eucommiae cortex (두충을 포함하는 한방추출물(Mix)의 항노화, 항염, 미백 효능 활성에 관한 연구)

  • Choi, Da Hee;Kim, Mi Ran;Kim, Min Young;Kim, Ho Hyun;Park, Sun-Young;Hwang, Hyung Seo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.45 no.1
    • /
    • pp.37-47
    • /
    • 2019
  • Recently, due to the increase in skin diseases caused by particulate matter, endocrine disruptor and environmental changes, the trend of development of cosmetic materials has been shifting to the more safe and effective ingredients based on natural materials rather than existing synthetic compounds like steroids and antihistamines. This study aimed to develop a new natural cosmetic materials using oriental herbs such as Eucommiae cortex, Alpinia oxyphylla Miquel and Bombyx batryticatus. First, DPPH assay was performed to examine the antioxidative activity of the herbal extract (Mix) and 98.8% DPPH radical scavenging activity was confirmed at $400{\mu}g/mL$ concentration of it. In order to confirm the whitening efficacy of oriental herbal extracts(mix), the amount of melanin synthesized after stimulation of ${\alpha}-MSH$ with B16F10 cells was measured. Results showed that it was decreased to 27.1% comparing with the only ${\alpha}-MSH$ treated group, which confirmed the whitening efficacy. Also, both nitric oxide(NO) production and iNOS and COX-2 expression were significantly reduced in RAW264.7 macrophages activated by LPS in the presence of the extracts(Mix). The mRNA expression of the inflammatory cytokines such as $IL-1{\alpha}$, $IL-1{\beta}$, IL-6, and $TNF-{\alpha}$ was also analyzed to confirm the inhibition effect of the extracts on inflammation. Finally, to confirm the enhancement of skin barrier function, the expression of claudin 1 gene, a tight junction protein, was observed using human keratinocyte HaCaT cells and increased as concentration dependent manner. From these results, it is concluded that the oriental herbal extracts(Mix) containing Eucommiae cortex, Alpinia oxyphylla Miquel and Bombyx batryticatus is effective for antioxidant, anti-inflammation, skin whitening, and skin barrier and thus could be applied as a new natural cosmetic material.

Voltammetric Sensor Incorporated with Conductive Polymer, Tyrosinase, and Ionic Liquid Electrolyte for Bisphenol F (전도성고분자, 티로시나아제 효소 및 이온성 액체 전해질을 융합한 전압전류법 기반의 비스페놀F 검출 센서)

  • Sung Eun Ji;Sang Hyuk Lee;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.3
    • /
    • pp.258-263
    • /
    • 2023
  • In this study, conductive polymers and the enzyme tyrosinase (Tyr) were deposited on the surface of a screen printed carbon electrode (SPCE), which can be fabricated as a disposable sensor chip, and applied to the detection of bisphenol F (BPF), an endocrine disruptor with proven links to male diseases and thyroid disorders, using electrochemical methods. On the surface of the SPCE working electrode, which was negatively charged by oxygen plasma treatment, a positively charged conductive polymer, poly(diallyldimethyl ammonium chloride) (PDDA), a negatively charged polymer compound, poly(sodium 4-styrenesulfonate) (PSS), and another layer of PDDA were layered by electrostatic attraction in the order of PDDA, PSS, and finally PDDA. Then, a layer of Tyr, which was negatively charged due to pH adjustment to 7.0, was added to create a PDDA-PSS-PDDA-Tyr sensor for BPF. When the electrode sensor is exposed to a BPF solution, which is the substrate and target analyte, 4,4'-methylenebis(cyclohexa-3,5-diene-1,2-dione) is generated by an oxidation reaction with the Tyr enzyme on the electrode surface. The reduction process of the product at 0.1 V (vs. Ag/AgCl) generating 4,4'-methylenebis(benzene-1,2-diol) was measured using cyclic and differential pulse voltammetries, resulting in a change in the peak current with respect to the concentration of BPF. In addition, we compared the detection performance of BPF using an ionic liquid electrolyte as an alternative to phosphate-buffered saline, which has been used in many previous sensing studies. Furthermore, the selectivity of bisphenol S, which acts as an interfering substance with a similar structure to BPF, was investigated. Finally, we demonstrated the practical applicability of the sensor by applying it to analyze the concentration of BPF in real samples prepared in the laboratory.