• Title/Summary/Keyword: endocrine disrupting chemicals

Search Result 199, Processing Time 0.019 seconds

Induction of Imposex in Rock Shell, Thais clavigera, Exposed to Organotins and Other Endocrine Disrupting Chemicals

  • Shim, Won Joon
    • Proceedings of the Korea Society of Environmental Biology Conference
    • /
    • 2003.11a
    • /
    • pp.7-11
    • /
    • 2003
  • Interactions of both feminizing and masculinizing chemicals inducing imposex in gastropod were investigated with a long-term exposure experiment. Imposex-free rock shell(Thais-clavigera)was exposed to TBT and other antagonistic chemicals (nonylphenol and DDT), P450 inducer (phenobarbital) and natural sex hormone (estrogen) mixtures for 60 days. None of imposexed-females were found in control, sham (ethanol) and testosterone exposure group, on the other hand imposex was induced in the TBT and all the TBT+antagonist mixture groups. After 60-day exposure, frequency of imposexed-female ranged from 31-68%. Female mean penis length (FMPL) of imposexed-female ranged from 0.87-2.58 mm, and relative penis length indices were from 7.2 to 21.2%. However, the degrees of imposex were different among the exposure groups. The FMPLS of three exposure groups (TBT+estrogen, + DDT and +nonylphe- not) were less than that of the TBT exposure group. Ethoxyresorufin-O-deethylase (EROD) activities in gastropod decreased in the TBT and all the TBT+antagonist ekposure groups compared to the control group. A negative correlation was abtained between TBT body residue and EROD activity, while a positive relationship was obtained between 737 body residue and the degree of imposex except for the TBT +DDT exposure group. Although 737 concentration was relatively high in the TBT+DDT exposure group, the TBT +DDT exposure group demonstrated low EROD activity and low degree of imposex. These results indicate that a certain antagonistic effect of DDT occurred in induction of imposex by TBT.

  • PDF

Comparative Study on Biological Effects of Gamma-Radiation and Bisphenol A with Tradescantia Micronucleus Assay (자주달개비 미세핵 분석법을 이용한 비스페놀 에이 및 감마선의 생물학적 영향 비교 연구)

  • 신해식;송희섭;현성희;이진홍;김진규
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.2
    • /
    • pp.158-164
    • /
    • 2002
  • Some of synthetic chemicals can net as an endocrine disrupting substance in higher animals. Dioxins, DDT, PCBs and bisphenol A (BPA) are classified into endocrine disruptors and aye under a strict control in many countries. This research was designed to compare the clastogenic effects of BPA to those of ionizng radiation to establish the relaltive effectiveness of BPA by means of Tradescantia micronucleus assay. For the uptake of the BPA through the stems, groups of fresh cuttings of Tradescantia BNL 4430 weve placed in BPA solutions of 0 to 4 $\mu$M for 6 hours under continuous aeration. The other groups of the cuttings were irradiated with 0 to 0.5 Gy of gamma- rays. The frequencies of micronucleus showed a positive dose- response relationship in the range of 0 to 0.5 Gy, and a clear concentration-response relationship in the experimental range of BPA concentrations. By comparing the two experimental results, it is possible to estimate the BPA concentration and its equivalent radiation dose for a fixed value of MCN frequency. BPA of $ll.8\mu{M}$ can give rise to 53.3 MCN/100 tetrads, which is the same frequency induced by 25 cGy of gamma- rays. It is of biological importance that clinical symptoms start to develop after a whole body exposure to radiation higher than 25 cGy. The results indicate that the pollen mother cells are an excellent biological end- point for toxicity test of suspected endocrine disrupting chemicals such as bisphenol A, cotylphenol and nonylphenol.

Adsorption of selected endocrine disrupting compounds (EDCs)/pharmaceutical active compounds (PhACs) onto granular activated carbon (GAC) : effect of single and multiple solutes (EDCs/PhACs의 단일,복합 조건에서의 GAC에 대한 흡착 연구)

  • Jung, Chanil;Son, Jooyoung;Yoon, Yeomin;Oh, Jeill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.235-248
    • /
    • 2014
  • The widespread occurrence of dissolved endocrine disrupting compounds(EDCs) and pharmaceutical active compounds(PhACs) in water sources is of concern due to their adverse effects. To remove these chemicals, adsorption of EDCs/PhACs on granular activated carbon(GAC) was investigated, and bisphenol A, carbamazepine, diclofenac, ibuprofen, and sulfamethoxazole were selected as commonly occurring EDCs/PhACs in the aquatic environment. Various adsorption isotherms were applied to evaluate compatability with each adsorption in the condition of single-solute. Removal difference between individual and competitive adsorption were investigated from the physicochemical properties of each adsorbate. Hydrophobicity interaction was the main adsorption mechanism in the single-solute adsorption with order of maximum adsorption capacity as bisphenol A > carbamazepine > sulfamethoxazole > diclofenac > ibuprofen, while both hydrophobicity and molecular size play significant roles in competitive adsorption. Adsorption kinetic was also controled by hydrophobicity of each adsorbate resulting in higher hydrophobicity allowed faster adsorption on available adsorption site on GAC. EDCs/PhACs adsorption on GAC was determined as an endothermic reaction resulting in better adsorption at higher temperature ($40^{\circ}C$) than lower temperature ($10^{\circ}C$).

Alteration in miRNA Expression Profiling with Response to Nonylphenol in Human Cell Lines

  • Paul, Saswati;Kim, Seung-Jun;Park, Hye-Won;Lee, Seung-Yong;An, Yu-Ri;Oh, Moon-Ju;Jung, Jin-Wook;Hwang, Seung-Yong
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.67-74
    • /
    • 2009
  • Exposures to environmental chemicals that mimic endogenous hormones are proposed for a number of adverse health effects, including infertility, abnormal prenatal and childhood development and above all cancers. In addition, recently miRNA (micro RNA) has been recognized to play an important role in various diseases and in cellular and molecular responses to toxicants. In this study, endocrine disrupting environmental toxicant, nonylphenol (NP) was treated to MCF-7 (Human breast cancer cell) and HepG2 (Human hepatocellular liver carcinoma) cell line at 3 hrs and 48 hrs time point and miRNA analysis using $mirVana^{TM}$ miRNA bioarray was performed and compared with total mRNA microarray data for the same cell line and treatment. Robust data quality was achieved through the use of dye-swap. Analysis of microarray data identifies a total of 20 and 11 miRNA expressions at 3 hrs and 48 hrs exposure to NP in MCF-7 cell line and a total of 14 and 47 miRNA expression at 3 hrs and 48 hrs exposure respectively to NP in HepG2 cell line. Expression profiling of the selected miRNA (let-7c, miR-16, miR-195, miR-200b, miR200c, miR-205, and miR-589) reveals changes in the expression of target genes related to metabolism, immune response, apoptosis, and cell differentiation. The present study can be informative and helpful to understand the role of miRNA in molecular mechanism of chemical toxicity and their influence on hormone dependent disease. Also this study may prove to be a valuable tool for screening potential estrogen mimicking pollutants in the environment.

Vitellogenesis in Vertebrates and Environmental Estrogen (척추동물의 난황형성과 환경에스트로젠)

  • 계명찬;한명수
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2000
  • Vitellogenesis, an important reproductive process in oviparous animals, includes the processes of hormonally regulated synthesis of yolk precursor protein, vitellogenin (Vg), and their deposition in ovarian oocytes as a vitellin which is an important energy source as well as buoyancy regulator of the egg. Vg genes consist of a gene family that encompasses a large number of lipoproteins and produce different Mr. Vg proteins in liver. The expression of Vg is largely dependent on the estrogen, and both reproductive cycle and temperature also influence Vg synthesis. Synthetic estrogens or estrogenic pollutants was sufficient to induce Vg in both sexes of oviparous vertebrates. Therefore, the estrogenic induction of vitellogenesis in male has been used for biological marker in the screening of estrogenicity of certain endocrine disrupting compounds and the monitoring the world-wide contamination of estrogenic compounds in wild life. In the studies on the biological hazard and influence of endocrine disrupting chemicals using the Vg induction in oviparous males, it is important to consider the reproductive cycle, zoogeography and biodiversity of the wild life animals in Korea.

  • PDF

Degradation of Bisphenol A and Removal of Its Estrogenic Activity by Two Laccase Transformants of Irpex lacteus (기계충버섯 형질전환체를 이용한 비스페놀 A의 분해와 에스토로겐 활성 제거)

  • Kim, Yun-Jung;Song, Hong-Gyu;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.44 no.3
    • /
    • pp.199-202
    • /
    • 2008
  • A white rot fungus Irpex lacteus produced lignin degrading enzymes, which showed degrading activity against various recalcitrant compounds. However, laccase, one of the lignin degrading enzymes, was too low to be assayed by spectrophotometry using o-tolidine as the chromogenic substrate in this fungus under various culture conditions. A laccase expression vector was constructed using a cDNA from Phlebia tremellosa with the constitutively expressed promoter of glyceraldehydes-3-phosphate dehydrogenase gene, and introduced into I. lacteus by the restriction enzyme mediated integration transformation through the protoplast-$CaCl_2$ procedure. Two transformants showed highly increased laccase activities at the early growth phase in the minimal liquid medium, and they not only degraded bisphenol A, a notorious endocrine disrupting chemical, but also removed the estrogenic activity effectively.

Molecular Cloning and Characterization of the Estrogen Receptor from the Slender Bitterling (Acheilognathus yamatsutae)

  • Kim, Jong-Geuk;Kim, Ha-Ryong;Park, Yong-Joo;Chung, Kyu-Hyuck;Oh, Seung-Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.26
    • /
    • pp.5.1-5.11
    • /
    • 2011
  • Objectives: In order to identify the possibility of slender bitterling (SB) (Acheilognathus yamatsutae) being used as a test species for estrogenic endocrine disrupting chemicals (EEDCs), we carried out the cloning and sequence characterization of the estrogen receptor (ER). Methods: The ER from a slender bitterling was obtained by reverse transcriptase-polymerase chain reaction (RT-PCR), 5'- and 3'-rapid amplification of cDNA ends (5'-RACE and 3'-RACE) and T-vector cloning. The expression of ER mRNA was also analyzed in six tissues (brain, liver, kidney, gill, gonad, and intestines) by real-time PCR. Results: We obtained an ER from the slender bitterling. The SB ER cDNA was 2189 base pairs (bp) in length and contained a 1707 bp open reading frame that encoded 568 amino acid residues. The SB ER amino acid sequence clustered in a monophyletic group with the $ER{\alpha}$ of other fish, and was more closely related to zebrafish $ER{\alpha}$(88% identity) than to the $ER{\alpha}$ of other fish. The SB ER cDNA was divided into A/B, C, D, E and F domains. The SB ER has conserved important sequences for ER functions, such as the DNA binding domain (D domain), which are consistent with those of other teleosts. Conclusions: The ER of the slender bitterling could provide basic information in toxicological studies of EEDCs in the slender bitterling.

A Chronic-Low-Dose Exposing of DEHP with OECD TG 443 Altered the Histological Characteristics and Steroidogeic Gene Expression of Adrenal Gland in Female Mice

  • Lee, Bo Young;Jo, Jeong Bin;Choi, Donchan;Lee, Sung-Ho;Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.25 no.4
    • /
    • pp.257-268
    • /
    • 2021
  • Phthalates and their metabolites are well-known endocrine disrupting chemicals. Di-(2-ethylhexyl) phthalate (DEHP) has been widely used in industry and the exposing possibility to adult is high. In this study, DEHP was treated (133 ㎍/L and 1,330 ㎍/L in drinking water) according to the OECD test guideline 443 to mature female mice and their adrenal gland were examined for histological characteristics and steroidogenic gene expression. The wet weight of the adrenal gland was increased in all administrated groups compared to control. The diameter of zona fasciculata (ZF) was increased by DEHP in both outer ZF and inner ZF but there was no difference in morphology of the cells and arrangements into zona between groups. In addition, the arrangement of extracellular matrix was not different between control and DEHP groups. CYP11B1 was mainly localized at ZF and the intensity was not different between groups. DAX1 was localized in zona glomerulosa (ZG) and ZF, and its expression levels were decreased by DEHP administration. Its level was lower in DEHP133 group than DEHP1330 group. On the other hand, CYP17A1 was localized in ZG of DEHP1330 group. These results suggest that chronic low-dose DEHP exposing may modify the microstructure and function of the adrenal cortical cortex.

Tumorigenic Effects of Endocrine-disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;de la Cruz, Joseph;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.12
    • /
    • pp.4809-4813
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as a representative EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells, used as a tumor model, were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. The expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, was also down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analysis also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated diseases.

Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;Cruz, Joseph Dela;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.13
    • /
    • pp.5117-5121
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells were used as a tumorigenic model. These were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. Expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, were subsequently down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD and various concentrations of LRE showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analyses also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated disease.