• Title/Summary/Keyword: end-to-end constraints

Search Result 263, Processing Time 0.029 seconds

End-to-End Quality of Service Constrained Routing and Admission Control for MPLS Networks

  • Oulai, Desire;Chamberland, Steven;Pierre, Samuel
    • Journal of Communications and Networks
    • /
    • v.11 no.3
    • /
    • pp.297-305
    • /
    • 2009
  • Multiprotocol label switching (MPLS) networks require dynamic flow admission control to guarantee end-to-end quality of service (QoS) for each Internet protocol (IP) traffic flow. In this paper, we propose to tackle the joint routing and admission control problem for the IP traffic flows in MPLS networks without rerouting already admitted flows. We propose two mathematical programming models for this problem. The first model includes end-to-end delay constraints and the second one, end-to-end packet loss constraints. These end-to-end QoS constraints are imposed not only for the new traffic flow, but also for all already admitted flows in the network. The objective function of both models is to minimize the end-to-end delay for the new flow. Numerical results show that considering end-to-end delay (or packet loss) constraints for all flows has a small impact on the flow blocking rate. Moreover, we reduces significantly the mean end-to-end delay (or the mean packet loss rate) and the proposed approach is able to make its decision within 250 msec.

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints (양극단 제약을 갖는 비주기, 주기 태스크와 메시지 스케줄링)

  • Oh Hoon;Park Hong Seong;Kim Hyoung Yuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.175-185
    • /
    • 2005
  • The scheduling methods of the distributed real-time systems have been proposed. However, they have some weak points. They did not schedule both sporadic and periodic tasks and messages at the same time or did not consider the end-to-end constraints such as precedence relations between sporadic tasks. This means that system scheduling must guarantee the constraints of practical systems and be applicable to them. This paper proposes a new scheduling method that can be applied to more practical model of distributed real-time systems. System model consists of sporadic and periodic tasks with precedence relations and sporadic and periodic messages and has end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

Scheduling of Sporadic and Periodic Tasks and Messages with End-to-End Constraints

  • Kim, Hyoung-Yuk;Kim, Sang-Yong;Oh, Hoon;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.747-752
    • /
    • 2004
  • Researches about scheduling of the distributed real-time systems have been proposed. However, they have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. So this paper proposes a new scheduling method for distributed real-time systems consisting of sporadic and periodic tasks with precedence relations and sporadic and periodic messages, guaranteeing end-to-end constraints. The proposed method is based on a binary search-based period assignment algorithm, an end-to-end laxity-based priority assignment algorithm, and three kinds of schedulability analysis, node, network, and end-to-end schedulability analysis. In addition, this paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system, shows that existing scheduling methods such as Rate Monotonic (RM) scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints, and proposes an end-to-end laxity-based priority assignment algorithm.

  • PDF

Designing Distributed Real-Time Systems with Decomposition of End-to-End Timing Donstraints (양극단 지연시간의 분할을 이용한 분산 실시간 시스템의 설계)

  • Hong, Seong-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.542-554
    • /
    • 1997
  • In this paper, we present a resource conscious approach to designing distributed real-time systems as an extension of our original approach [8][9] which was limited to single processor systems. Starting from a given task graph and a set of end-to-end constraints, we automatically generate task attributes (e.g., periods and deadlines) such that (i) the task set is schedulable, and (ii) the end-to-end timing constraints are satisfied. The method works by first transforming the end-to-end timing constraints into a set of intermediate constraints on task attributes, and then solving the intermediate constraints. The complexity of constraint solving is tackled by reducing the problem into relatively tractable parts, and then solving each sub-problem using heuristics to enhance schedulability. In this paper, we build on our single processor solution and show how it can be extended for distributed systems. The extension to distributed systems reveals many interesting sub-problems, solutions to which are presented in this paper. The main challenges arise from end-to-end propagation delay constraints, and therefore this paper focuses on our solutions for such constraints. We begin with extending our communication scheme to provide tight delay bounds across a network, while hiding the low-level details of network communication. We also develop an algorithm to decompose end-to-end bounds into local bounds on each processor of making extensive use of relative load on each processor. This results in significant decoupling of constraints on each processor, without losing its capability to find a schedulable solution. Finally, we show, how each of these parts fit into our overall methodology, using our previous results for single processor systems.

  • PDF

End-to-End Scheduling Method Considering 3-type RT-Data in Distributed Control Systems (분산 제어시스템에서 3가지 형태의 실시간 데이터를 고려하는 양극단 스케줄링 방법)

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.311-314
    • /
    • 2003
  • In recent years, distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints considering aperiodic, periodic and non-real-time message and task simultaneously. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks.

  • PDF

End-to-End Laxity-based Priority Assignment for Distributed Real-Time Systems (분산 실시간 시스템을 위한 양극단 여유도 기반의 우선순위 할당 방법)

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.59-61
    • /
    • 2004
  • Researches about scheduling distributed real-time systems have some weak points, not scheduling both sporadic and periodic tasks and messages or being unable to guaranteeing the end-to-end constraints due to omitting precedence relations between sporadic tasks. This paper describes the application model of sporadic tasks with precedence constraints in a distributed real-time system. It is shown that existing scheduling methods such as Rate Monotonic scheduling are not proper to be applied to the system having sporadic tasks with precedence constraints. So this paper proposes an end-to-end laxity-based priority assignment algorithm which considers the practical laxity of a task and allocates a proper priority to a task.

  • PDF

Optimal Period and Priority Assignment Using Task & Message-based Scheduling in Distributed Control Systems

  • Kim, Hyoung-Yuk;Park, Hong-Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.60.1-60
    • /
    • 2001
  • In recent years, distributed control systems(DCS) using fieldbus such as CAN have been being applied to process systems but it is very difficult to design the DCS in order to guarantee the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of ...

  • PDF

Optimal Period and Priority Assignment Using Task & Message-Based Scheduling in Distributed Control Systems (분산 제어 시스템에서의 태스크와 메시지 기반 스케줄링을 이용한 최적 주기와 우선순위 할당)

  • 김형육;이철민;박홍성
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.506-513
    • /
    • 2002
  • Distributed control systems(DCS) using fieldbus such as CAN have been applied to process systems but it is very difficult to design the DCS while guaranteeing the given end-to-end constraints such as precedence constraints, time constraints, and periods and priorities of tasks and messages. This paper presents a scheduling method to guarantee the given end-to-end constraints. The presented scheduling method is the integrated one considering both tasks executed in each node and messages transmitted via the network and is designed to be applied to a general DCS that has multiple loops with several types of constraints, where each loop consists of sensor nodes with multiple sensors, actuator nodes with multiple actuators and controller nodes with multiple tasks. An assignment method of the optimal period of each loop and a heuristic assignment rule of each message's priority are proposed and the integrated scheduling method is developed based on them.

Task Assignment Strategies for a Complex Real-time Network System

  • Kim Hong-Ryeol;Oh Jae-Joon;Kim Dae-Won
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.601-614
    • /
    • 2006
  • In this paper, a study on task assignment strategies for a complex real-time network system is presented. Firstly, two task assignment strategies are proposed to improve previous strategies. The proposed strategies assign tasks with meeting end-to-end real-time constraints, and also with optimizing system utilization through period modulation of the tasks. Consequently, the strategies aim at the optimizationto optimize of system performance with while still meeting real-time constraints. The proposed task assignment strategies are devised using the genetic algorithmswith heuristic real-time constraints in the generation of new populations. The strategies are differentiated by the optimization method of the two objectives-meeting end-to-end real-time constraints and optimizing system utilization: the first one has sequential genetic algorithm routines for the objectives, and the second one has one multiple objective genetic algorithm routine to find a Pareto solution. Secondly, the performances of the proposed strategies and a well-known existing task assignment strategy using the BnB(Branch and Bound) optimization are compared with one other through some simulation tests. Through the comparison of the simulation results, the most adequate task assignment strategies are proposed for some as system requirements-: the optimization of system utilization, the maximization of running tasktasks, and the minimization of the number of network node nodesnumber for a network system.

A Distributed Low-cost Dynamic Multicast Routing Algorithm with Delay Constraints (지연시간을 고려한 최소비용의 동적 멀티캐스트 라우팅 알고리즘)

  • Sin, Min-U;Im, Hyeong-Seok
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.39 no.4
    • /
    • pp.180-187
    • /
    • 2002
  • Many real-time multimedia applications, such as video conferencing have stringent end-to-end delay constraints and consume large amount of network resources. In order to support these applications efficiently, multicast routing algorithms computing least cost multicast trees that satisfy a given end-to-end delay constraint are needed. However, finding such a tree is known to be computationally expensive. Therefore, we propose a heuristic distributed multicast routing algorithm that reduces a “finding multicast tree”that satisfies a given end-to-end delay constraint and minimizes the average resulting tree cost. Also, simulation results show that the proposed algorithm has much better average cost performance than other existing algorithms.