• Title/Summary/Keyword: end-spring

Search Result 329, Processing Time 0.026 seconds

Large deflection analysis of edge cracked simple supported beams

  • Akbas, Seref Doguscan
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.433-451
    • /
    • 2015
  • This paper focuses on large deflection static behavior of edge cracked simple supported beams subjected to a non-follower transversal point load at the midpoint of the beam by using the total Lagrangian Timoshenko beam element approximation. The cross section of the beam is circular. The cracked beam is modeled as an assembly of two sub-beams connected through a massless elastic rotational spring. It is known that large deflection problems are geometrically nonlinear problems. The considered highly nonlinear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. There is no restriction on the magnitudes of deflections and rotations in contradistinction to von-Karman strain displacement relations of the beam. The beams considered in numerical examples are made of Aluminum. In the study, the effects of the location of crack and the depth of the crack on the non-linear static response of the beam are investigated in detail. The relationships between deflections, end rotational angles, end constraint forces, deflection configuration, Cauchy stresses of the edge-cracked beams and load rising are illustrated in detail in nonlinear case. Also, the difference between the geometrically linear and nonlinear analysis of edge-cracked beam is investigated in detail.

Evaluating the accuracy of a new nonlinear reinforced concrete beam-column element comprising joint flexibility

  • Izadpanah, Mehdi;Habibi, AliReza
    • Earthquakes and Structures
    • /
    • v.14 no.6
    • /
    • pp.525-535
    • /
    • 2018
  • This study presents a new beam-column model comprising material nonlinearity and joint flexibility to predict the nonlinear response of reinforced concrete structures. The nonlinear behavior of connections has an outstanding role on the nonlinear response of reinforced concrete structures. In presented research, the joint flexibility is considered applying a rotational spring at each end of the member. To derive the moment-rotation behavior of beam-column connections, the relative rotations produced by the relative slip of flexural reinforcement in the joint and the flexural cracking of the beam end are taken into consideration. Furthermore, the considered spread plasticity model, unlike the previous models that have been developed based on the linear moment distribution subjected to lateral loads includes both lateral and gravity load effects, simultaneously. To confirm the accuracy of the proposed methodology, a simply-supported test beam and three reinforced concrete frames are considered. Pushover and nonlinear dynamic analysis of three numerical examples are performed. In these examples the nonlinear behavior of connections and the material nonlinearity using the proposed methodology and also linear flexibility model with different number of elements for each member and fiber based distributed plasticity model with different number of integration points are simulated. Comparing the results of the proposed methodology with those of the aforementioned models describes that suggested model that only uses one element for each member can appropriately estimate the nonlinear behavior of reinforced concrete structures.

Dynamic increase factor for progressive collapse analysis of semi-rigid steel frames

  • Zhu, Yan Fei;Chen, Chang Hong;Yao, Yao;Keer, Leon M.;Huang, Ying
    • Steel and Composite Structures
    • /
    • v.28 no.2
    • /
    • pp.209-221
    • /
    • 2018
  • An empirical and efficient method is presented for calculating the dynamic increase factor to amplify the applied loads on the affected bays of a steel frame structure with semi-rigid connections. The nonlinear static alternate path analysis is used to evaluate the dynamic responses. First, the polynomial models of the extended end plate and the top and seat connection are modified, and the proposed polynomial model of the flush end plate connection shows good agreement as compared with experimental results. Next, a beam model with nonlinear spring elements and plastic hinges is utilized to incorporate the combined effect of connection flexibility and material nonlinearity. A new step-by-step analysis procedure is established to obtain quickly the dynamic increase factor based on a combination of the pushdown analysis and nonlinear dynamic analysis. Finally, the modified dynamic increase factor equation, defined as a function of the maximum ratio value of energy demand to energy capacity of an affected beam, is derived by curve fitting data points generated by the different analysis cases with different column removal scenarios and five types of semi-rigid connections.

Parametric Analysis for Up-lifting force on Slab track of Bridge under Train Load (열차하중 재하시 교량상slab궤도의 상향력 민감도분석)

  • Choi, Sung-Ki;Park, Dae-Geun;Han, Sang-Yun;Kang, Young-Jong
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.279-282
    • /
    • 2008
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of the end rotation of the overhang due to the vertical load. When the up-lifting force exceeds the clamp force of the fastener clip, the rail pad is out of fastener, which makes decrease the serviceability of the railway, such as noise and vibration. Furthermore, it is possible to reduce the safety of the track as the longitudinal resistance. This study is focused on guideline suggestion to decrease up-lifting force in the fastener adjacent to the civil joint of slab track of bridge throughout the parametric analysis between the vertical spring stiffness of the fastener as the material approach, the space of fastener adjacent to bridge transition, the rigidity of the girder as the geometrical approach and up-lifting force under the train load.

  • PDF

Empirical Analysis of Airplane Route for Reduction of Aircraft Noise at Gimhae International Airport (김해국제공항 항공기 소음 저감을 위한 비행기항적실증분석)

  • Kim, Bong-Ki;Lee, Seung-Won
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.257-266
    • /
    • 2021
  • This study explored measures to reduce noise applicable to Gimhae international airport centering on densely packed housing areas. Especially, as for measures to relieve noise damage on the densely packed housing areas in Gimhae-si, the noise reduction effect is expected to be doubled if the west runway (36L/18R) is used as the preferred runway for the 36 direction takeoff, as well as if the flight bypasses the densely packed housing areas by means of sophisticated navigation using the area navigation (RNAV) procedure based on performance-based navigation (PBN). Takeoff toward the south connects the flight path to the South Sea which has comparatively low noise impact, relieving noise damage on the densely packed housing areas (apartment complexes in Naeoe-dong of Gimhae-si, etc.) near the northern end of the runway. The operation of the runway displaced threshold is currently being implemented on the west runway (36L/18R) of Gimhae international airport. It has been found that swing landing in spring and summer when the wind blows from the south has a noise reduction effect on the noise sensitive areas at the side and end of the west runway (Gangdong-dong and Jukdong-dong of Gangseo-gu and Buram-dong of Gimhae-si, etc.).

Seasonal Survival Characteristics of Conifer Seedlings and Their Suitable Planting Season (침엽수(針葉樹) 식재시기별(植栽時期別) 활착특성(滑着特性)과 식재적기(植栽適期)에 관한 연구(硏究))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.58 no.1
    • /
    • pp.34-40
    • /
    • 1982
  • Main consideration of this trial is to know whether the planting work should be possible to do not only in the early spring but also in the summer or autumn, for giving the guide to get the work plan and to broaden the employing season of the skilled forest worker. Seedling of Pinus koraiensis, Larix leptolepsis, Pinus rigida, Pinus rigida${\times}$ P. taeda(wind) and Chamaecyparia obtusa as the test species had been planted in 15 days interval from the middle of March to the end of November. The seedling survival was investigated in the spring time of coming year because the winter damage could be problems. At the same time the climate data was measured daily and the shoot growth of test species were also measured in other near plantation at 15 days interval to know the influence to survival. From these results the spring and autumn planting is showing the good survival and the summer planting seems to give the difficulties. The spring planting in the southern temperate zone could be stared earlier as the end of February or beginning of March because the soil temperature are increasing up more $5^{\circ}C$ from this time. But the summer planting from the beginning of May until the end of August in better to avoid with excluding specially the good season of rainfall distribution because of the shoot growth of green confer seedling and the leave sprouting of Larix leptolepsis are so vigorously growing up from the begining of May and its wood structure is too weak to compensate the water loss. But among the test species Pinus koraiensis and Chamaecyparis obtusa have more possibility to plant in the summer season. The autumn planting seems to be very reasonable to accept newly in the trial region. This may be the reasons of still high soil temperature to grow the seedling root and of hardened school to resist from the dry winter wind. But it will be carefully that the strongly exposured site could be to avoid for the autumn planting in case of specially Pinus rigida${\times}$P. taeda and Chamaecyparis obtusa. From these discussion the guide table 1 for planting season with the test species is proposed and can be used for planing and employing in the trial zone.

  • PDF

Comparison of Particulate Matter and Ammonia Emission in Different Types of Laying Hen Poultry Houses during Spring (봄철 산란계사 사육형태별 미세먼지 및 암모니아 농도 비교)

  • Hong, Eui-Chul;Kang, Bo-Seok;Kang, Hwan-Ku;Jeon, Jin-Joo;You, Are-Sun;Kim, Hyun-Soo;Son, Jiseon;Kim, Hee-Jin;Yun, Yeon-Seo
    • Korean Journal of Poultry Science
    • /
    • v.48 no.3
    • /
    • pp.151-160
    • /
    • 2021
  • This study was conducted to determine the concentrations of particulate matter (PM) and NH3 emissions from different types of laying hens poultry houses during spring. The concentrations of PM and NH3 were measured three times (2-week intervals; March to May) in Floor-pen-, Aviary-, and Cage-type poultry houses. Overall, PM10 and PM2.5 concentrations were found to be low from 22:00 to 04:00. The PM10 and PM2.5 concentrations in Floor-pen and Cage houses were similar with no significant daily deviation. NH3 concentrations measured over 24 h at the center and end of Floor-pen house were relatively constant. Irrespective of measurement location, NH3 concentrations were the lowest in Floor-pen house. Moreover, NH3 concentrations were higher at the end of Floor-pen and Aviary houses than that at the center; however, lower concentrations of NH3 were detected at the end of Cage house. The concentrations of PM10 and PM2.5 around the poultry houses were 57.5 and 34.0 ㎍/m3, respectively, with the daily average PM10 and PM2.5 concentrations (4,730 and 447.7 ㎍/m3, respective) being the highest in Aviary house. The concentrations of NH3 at the center and end of Cage house were the highest at 12.0 and 9.31 ppm, respectively. Furthermore, in Cage house, the emission factor of NH3 was the lowest, whereas there was no significant difference on that of NH3. In conclusion, among the three types of poultry houses assessed, PM (PM10, PM2.5) concentrations were higher in Aviary house, whereas NH3 concentrations were higher in Cage house.

Hydrograph Separation using Geochemical tracers by Three-Component Mixing Model for the Coniferous Forested Catchment in Gwangneung Gyeonggido, Republic of Korea

  • Kim, Kyongha;Yoo, Jae-Yun
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.561-566
    • /
    • 2007
  • This study was conducted to clarify runoff production processes in forested catchment through hydrograph separation using three-component mixing model based on the End Member Mixing Analysis (EMMA) model. The study area is located in the coniferous-forested experimental catchment, Gwangneung Gyeonggido near Seoul, Korea (N 37 45', E 127 09'). This catchment is covered by Pinus Korainensis and Abies holophylla planted at stocking rate of 3,000 trees $ha^{-1}$ in 1976. Thinning and pruning were carried out two times in the spring of 1996 and 2004 respectively. We monitored 8 successive events during the periods from June 15 to September 15, 2005. Throughfall, soil water and groundwater were sampled by the bulk sampler. Stream water was sampled every 2-hour through ISCO automatic sampler for 48 hours. The geochemical tracers were determined in the result of principal components analysis. The concentrations of $SO_4{^{2-}$ and $Na^+$ for stream water almost were distributed within the bivariate plot of the end members; throughfall, soil water and groundwater. Average contributions of throughfall, soil water and groundwater on producing stream flow for 8 events were 17%, 25% and 58% respectively. The amount of antecedent precipitation (AAP) plays an important role in determining which end members prevail during the event. It was found that ground water contributed more to produce storm runoff in the event of a small AAP compared with the event of a large AAP. On the other hand, rain water showed opposite tendency to ground water. Rain water in storm runoff may be produced by saturation overland flow occurring in the areas where soil moisture content is near saturation. AAP controls the producing mechanism for storm runoff whether surface or subsurface flow prevails.

Dynamic Analysis of Shattering of Tongil Paddy (통일(統一)벼의 탈립(脱粒)에 관(關)한 역학적(力學的) 분석(分析))

  • Kang, Young Sun;Chung, Chang Joo
    • Journal of Biosystems Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-21
    • /
    • 1984
  • This study was intended to analyze the dynamic force system which induced the shattering of paddy grains. A model to predict the shattering of paddy grains was developed, and physical quantities, such as mass distribution and rigidity of rice plant, needed for evaluating the minimum shattering forces were also measured. Under the assumption that rice plant right before harvesting is a vibratory system, the mathematical model of the vibratory system was developed and solved with the varied conditions of forcing functions. The results of the study were summarized as follows: 1. The shattering of grain occurred at the abscission layer of grain by the bending moments resulted from the impact force due to the collision of panicles of rice plant. 2. The vibratory model developed for milyang 23 rice variety was analyzed to give the natural frequencies of 7-9 Hz, which were closely related with the excitation frequencies of 4-10 Hz caused by various machine parts besides engine. Thus, avoiding the resonance should be taken into consideration in the design of the harvesting machinery. 3. It was analyzed to predict the lowest frequency that could develop the shattering when the excitation force was applied to the lower end of stem. The lowest frequency for the Milyang 23 rice variety ranged from 8.33 Hz to 11.66 Hz as the amplitude varied from 1 cm to 2.5 cm. 4. The degree of shattering depended upon the magnitude of the impact force and its application point. For Milyang 23 rice variety, the minimum impact force developing the shattering was $5g_f$ when it was applied at 1 cm above the lower end of stern and $1g_f$ when applied at 5 cm above the lower end of stem. 5. The minimum colliding velocity of the panicle, when it was on the ground that would just develop the shattering, was given as follows, $$V=\sqrt{\frac{K_t}{m_g}{\cdot}{{\phi}^2}}$$ where V : The colliding velocity of the panicle against ground to cause the shatteering of rice grain. (cm/sec) $K_t$ : The minimum spring constant for bending at the abscission layer of grain. (dyne-cm/rad) ${\phi}$ : The minimum shattering angle of grain (rad) $m_g$ : The maximum mass of grain. (g).

  • PDF

Trend of Climatic Growing Season using Average Daily Temperature (1971~2013) in Suwon, Korea (일평균기온(1971~2013)을 이용한 수원지역의 기후학적 식물생육기간의 변화 경향)

  • Jung, Myung-Pyo;Shim, Kyo-Moon;Kim, Yong-Seok;Choi, In-Tae;So, Kyu-Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.285-289
    • /
    • 2014
  • The extension of growing season (GS) across the Northern Hemisphere have been linked to increasing temperature, related with global warming. Therefore, in this study, The start, end, and length of GS in Suwon, Korea from 1971 to 2013 based on observed daily mean air temperature are examined using three indices. The GS starts on average after $98.598.5{\pm}1.42$ Julian days and ends after $318.7{\pm}1.08$ Julian days. The average length of GS is $220.2{\pm}2.09$ Julian days. The length of GS in Suwon from 1971 to 2013 has been extended by 6.8 days/decade with an earlier onset of the GS (-4.1 days/decade) and later end of the GS (2.7 days/decade). This change may be due to an advanced start of the GS in spring rather than later end of the GS. In further study, it is necessary to select an index carefully to find the most suitable one for Korea.