• Title/Summary/Keyword: end-of-pipe systems

Search Result 33, Processing Time 0.029 seconds

A Study on the Noise Produced by Unsteady Exhaust Efflux of Engine (기관의 비정상 배기배출에 의해 생성되는 소음에 관한 연구)

  • 이민호;박명규
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.191-200
    • /
    • 1997
  • This paper discusses prediction of the sound pressure level produced by simple engine exhaust systems(plain pipe, plain expansion chamber pipe, plain expansion chamber with internally extended inlet and outlet pipe, perforated pipe enclosed in a plain expansion chamber) and a computer program has been developed which predicts the sound pressure level and the frequency spectrum. The program utilizes unsteady flow gas dynamic theory and acoustic theory to predict the pressure-time history in the exhaust system and the mass flow rate-time history at the open end of the system and the sound pressure levels(1/3 Octave band levels) and the frequency spectrum in semi-anechoic room. The predictions are compared with measured levels and show a high degree of correlation.

  • PDF

Crack detection method for step-changed non-uniform beams using natural frequencies

  • Lee, Jong-Won
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.173-181
    • /
    • 2022
  • The current paper presents a technique to detect crack in non-uniform cantilever-type pipe beams, that have step changes in the properties of their cross sections, restrained by a translational and rotational spring with a tip mass at the free end. An equation for estimating the natural frequencies for the non-uniform beams is derived using the boundary and continuity conditions, and an equivalent bending stiffness for cracked beam is applied to calculate the natural frequencies of the cracked beam. An experimental study for a step-changed non-uniform cantilever-type pipe beam restrained by bolts with a tip mass is carried out to verify the proposed method. The translational and rotational spring constants are updated using the neural network technique to the results of the experiment for intact case in order to establish a baseline model for the subsequent crack detection. Then, several numerical simulations for the specimen are carried out using the derived equation for estimating the natural frequencies of the cracked beam to construct a set of training patterns of a neural network. The crack locations and sizes are identified using the trained neural network for the 5 damage cases. It is found that the crack locations and sizes are reasonably well estimated from a practical point of view. And it is considered that the usefulness of the proposed method for structural health monitoring of the step-changed non-uniform cantilever-type pipe beam-like structures elastically restrained in the ground and have a tip mass at the free end could be verified.

The Product-Oriented International Environmental Regulations and Korean Firm' Countermeasures - Focusing on the Electrical and Electronic Industry- (제품중심 국제환경규제와 한국기업의 대응 -전기.전자제품의 환경규제를 중심으로-)

  • Myung, Chang-Sig
    • Management & Information Systems Review
    • /
    • v.24
    • /
    • pp.45-71
    • /
    • 2008
  • These days the international environmental regulations of the developed countries, especially from the EU, are rapidly changed to the regulations of product-based environment from a conventional end-of-pipe environmental technology. Especially the motive in this paper come from the EU's electrical and electronic equipment environment regulation. It may affect much to whole export of Korea Firms Integrated product policy has the potential to increase not only competitive power in today's global market, but also trade compatibility between countries. Furthermore it is important to make a contribution to sustainable development. CEOs must change their notions about firms' environmental policy from the end-of-pipe approach to the sustainable approach to improve company's competitive power. As emphasized a paradigm of naw environmental management by EU' environmental directives, the company must establish clean production system to save resources and reduces pollutant. Also Korean Company constructs a systematical network to collect EU' environmental regulation information which are changing rapidly. Large company will cooperate with small and medium-sized firm for their win-win strategy in the field of environmental management. Also it is necessary to make the domestic regulations of product-based environment to meet the international environmental regulations.

  • PDF

Effects of Diverse Water Pipe Materials on Bacterial Communities and Water Quality in the Annular Reactor

  • Jang, Hyun-Jung;Choi, Young-June;Ka, Jong-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.115-123
    • /
    • 2011
  • To investigate the effects of pipe materials on biofilm accumulation and water quality, an annular reactor with the sample coupons of four pipe materials (steel, copper, stainless steel, and polyvinyl chloride) was operated under hydraulic conditions similar to a real plumbing system for 15 months. The bacterial concentrations were substantially increased in the steel and copper reactors with progression of corrosion, whereas those in stainless steel (STS) and polyvinyl chloride (PVC) reactors were affected mainly by water temperature. The heterotrophic plate count (HPC) of biofilms was about 100 times higher on steel pipe than other pipes throughout the experiment, with the STS pipe showing the lowest bacterial number at the end of the operation. Analysis of the 16S rDNA sequences of 176 cultivated isolates revealed that 66.5% was Proteobacteria and the others included unclassified bacteria, Actinobacteria, and Bacilli. Regardless of the pipe materials, Sphingomonas was the predominant species in all biofilms. PCR-DGGE analysis showed that steel pipe exhibited the highest bacterial diversity among the metallic pipes, and the DGGE profile of biofilm on PVC showed three additional bands not detected from the profiles of the metallic materials. Environmental scanning electron microscopy showed that corrosion level and biofilm accumulation were the least in the STS coupon. These results suggest that the STS pipe is the best material for plumbing systems in terms of the microbiological aspects of water quality.

Dynamic Characteristics of Pressure Propagation According to Boundary Condition Changes in a Transmission Line (경계조건변화에 따른 동력전달관로의 동특성)

  • 나기대;유영태;김지환
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.75-82
    • /
    • 2002
  • Design for a quiet operation of fluid power system requires the understanding of noise and vibration characteristics of the system. It's not easy to analyze noise problem in hydraulic cylinder used in typical actuator Because they've got complex fluid dynamics. One of the fundamental problems associated with the hydraulic system is the pulsating flow in pipe lines, which can be tackled by the analysis under simplifying assumptions. The present study focuses on theoretic analysis and experimental study on the dynamics of laminar pulsating flow in a circular pipe. We analyze the propagation characteristics of the pressure pulse within a hydraulic pipe line taking into account the pulsating flow frequency variation. We also measure instantaneous pressure pulses within pipe line to identify the transfer functions. We conduct series of experiments to investigate the propagation characteristics of pressure pulse for various pressure of pulsating flow. The working fluid of the present study is ISO VG46 and the temperature ranges from 20 to $60^{\circ}$ with normal pressure at 4000kPa. The flow rate is measured by using an ultrasonic flow meter. Pressures at fixed upstream and downstream positions are measured concurrently. The electric signals of the pressure sensor are stored and analyzed using a system analyzer(PKE 983 series). The frequency is varied in the range of 10~500Hz. The Reynolds number is kept below 2,000. In the present study, boundary condition was varied by installing a surge tank and an orifice at the end of pipe. Experimental and theoretical results were compared each other under various boundary conditions.

Unsteady Flow with Cavitation in Viscoelastic Pipes

  • Soares, Alexandre K.;Covas, Didia I.C.;Ramos, Helena M.;Reis, Luisa Fernanda R.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.269-277
    • /
    • 2009
  • The current paper focuses on the analysis of transient cavitating flow in pressurised polyethylene pipes, which are characterized by viscoelastic rheological behaviour. A hydraulic transient solver that describes fluid transients in plastic pipes has been developed. This solver incorporates the description of dynamic effects related to the energy dissipation (unsteady friction), the rheological mechanical behaviour of the viscoelastic pipe and the cavitating pipe flow. The Discrete Vapour Cavity Model (DVCM) and the Discrete Gas Cavity Model (DGCM) have been used to describe transient cavitating flow. Such models assume that discrete air cavities are formed in fixed sections of the pipeline and consider a constant wave speed in pipe reaches between these cavities. The cavity dimension (and pressure) is allowed to grow and collapse according to the mass conservation principle. An extensive experimental programme has been carried out in an experimental set-up composed of high-density polyethylene (HDPE) pipes, assembled at Instituto Superior T$\acute{e}$cnico of Lisbon, Portugal. The experimental facility is composed of a single pipeline with a total length of 203 m and inner diameter of 44 mm. The creep function of HDPE pipes was determined by using an inverse model based on transient pressure data collected during experimental runs without cavitating flow. Transient tests were carried out by the fast closure of the ball valves located at downstream end of the pipeline for the non-cavitating flow and at upstream for the cavitating flow. Once the rheological behaviour of HDPE pipes were known, computational simulations have been run in order to describe the hydraulic behaviour of the system for the cavitating pipe flow. The calibrated transient solver is capable of accurately describing the attenuation, dispersion and shape of observed transient pressures. The effects related to the viscoelasticity of HDPE pipes and to the occurrence of vapour pressures during the transient event are discussed.

High Temperature Fatigue Strength of the Welded Joint in Exhaust System (배기계 용접이음의 고온피로강도)

  • Chu, Seok-Jae;Lee, Han-Yong;NamKoong, Kyu-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1028-1034
    • /
    • 2008
  • The exhaust systems are usually subjected to vibration or shock at high temperatures. The high temperature fatigue tests of the exhaust systems are rarely performed in domestic industries due to limited number of test facility and high test costs. In this paper, the high temperature fatigue test of some part of the exhaust system, not the whole system, is carried out. The resonator located at the central range is heated in the cylindrical electric furnace and the alternating load is applied on the end of the pipe welded to the resonator. The high temperature fatigue strength of the welded joint is obtained. The location of the fatigue crack is different to that in room temperature.

Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model (분포정수계 유압관로 모델의 동특성 해석)

  • Kim, Do Tae
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.

Cable vibration control with internal and external dampers: Theoretical analysis and field test validation

  • Di, Fangdian;Sun, Limin;Chen, Lin
    • Smart Structures and Systems
    • /
    • v.26 no.5
    • /
    • pp.575-589
    • /
    • 2020
  • For vibration control of stay cables in cable-stayed bridges, viscous dampers are frequently used, and they are regularly installed between the cable and the bridge deck. In practice, neoprene rubber bushings (or of other types) are also widely installed inside the cable guide pipe, mainly for reducing the bending stresses of the cable near its anchorages. Therefore, it is important to understand the effect of the bushings on the performance of the external damper. Besides, for long cables, external dampers installed at a single position near a cable end can no longer provide enough damping due to the sag effect and the limited installation distance. It is thus of interest to improve cable damping by additionally installing dampers inside the guide pipe. This paper hence studies the combined effects of an external damper and an internal damper (which can also model the bushings) on a stay cable. The internal damper is assumed to be a High Damping Rubber (HDR) damper, and the external damper is considered to be a viscous damper with intrinsic stiffness, and the cable sag is also considered. Both the cases when the two dampers are installed close to one cable end and respectively close to the two cable ends are studied. Asymptotic design formulas are derived for both cases considering that the dampers are close to the cable ends. It is shown that when the two dampers are placed close to different cable ends, their combined damping effects are approximately the sum of their separate contributions, regardless of small cable sag and damper intrinsic stiffness. When the two dampers are installed close to the same end, maximum damping that can be achieved by the external damper is generally degraded, regardless of properties of the HDR damper. Field tests on an existing cable-stayed bridge have further validated the influence of the internal damper on the performance of the external damper. The results suggest that the HDR is optimally placed in the guide pipe of the cable-pylon anchorage when installing viscous dampers at one position is insufficient. When an HDR damper or the bushing has to be installed near the external damper, their combined damping effects need to be evaluated using the presented methods.

Damage detection for pipeline structures using optic-based active sensing

  • Lee, Hyeonseok;Sohn, Hoon
    • Smart Structures and Systems
    • /
    • v.9 no.5
    • /
    • pp.461-472
    • /
    • 2012
  • This study proposes an optics-based active sensing system for continuous monitoring of underground pipelines in nuclear power plants (NPPs). The proposed system generates and measures guided waves using a single laser source and optical cables. First, a tunable laser is used as a common power source for guided wave generation and sensing. This source laser beam is transmitted through an optical fiber, and the fiber is split into two. One of them is used to actuate macro fiber composite (MFC) transducers for guided wave generation, and the other optical fiber is used with fiber Bragg grating (FBG) sensors to measure guided wave responses. The MFC transducers placed along a circumferential direction of a pipe at one end generate longitudinal and flexural modes, and the corresponding responses are measured using FBG sensors instrumented in the same configuration at the other end. The generated guided waves interact with a defect, and this interaction causes changes in response signals. Then, a damage-sensitive feature is extracted from the response signals using the axi-symmetry nature of the measured pitch-catch signals. The feasibility of the proposed system has been examined through a laboratory experiment.