• 제목/요약/키워드: end-effector

검색결과 367건 처리시간 0.025초

직교좌표계 가속도 외란 추정을 통한 충돌 감지 알고리즘 개발 (Development of Collision Detection Method Using Estimation of Cartesian Space Acceleration Disturbance)

  • 정병진;문형필
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.258-262
    • /
    • 2017
  • In this paper, we propose a new collision detection algorithm for human-robot collaboration. We use an IMU sensor located at the tip of the manipulator and the kinematic behavior of the manipulator to detect the unexpected collision between the robotic manipulator and environment. Unlike other method, the developed algorithm uses only the kinematic relationship between the manipulator joint and the end effector. Therefore, the collision estimation signal is not affected by the error of the dynamics model. The proposed collision detection algorithm detects the collision by comparing the estimated acceleration of the end effector derived from the position, velocity and acceleration trajectories of the robot joints with the actual acceleration measured by the sensor. In simulation, we compare the performance of our method with the conventional Residual Observer (ROB). Our method is less sensitive to the load variation because of the independency on the dynamic modeling of the manipulator.

로봇 매니퓰레이터의 직교공간 적응제어 방식 (A Cartesian Space Adaptive Control Scheme for Robot Manipulators)

  • 황석용;유준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 추계학술대회 논문집 학회본부
    • /
    • pp.397-400
    • /
    • 1991
  • This paper presents a cartesian space decentralized adaptive controller design for the end effector of the robot manipulator to track the given desired trajectory in the cartesian coordinate. By the cartesian based control scheme, the task related high level motion command is directly executed without solving the complex inverse kinematic equations. The controller does not require the complex manipulator dynamic model, and hence it is computationally very efficient. Each degree of freedom of the end effector on the cartesian space is controlled by a PID feedback controller and a velocity acceleration feed forward conpensation part. Simulation results for a two-link direct drive manipulator conform that the present cartesian based decentralized scheme is feasible.

  • PDF

The end effector of circadian heart rate variation: the sinoatrial node pacemaker cell

  • Yaniv, Yael;Lakatta, Edward G.
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.677-684
    • /
    • 2015
  • Cardiovascular function is regulated by the rhythmicity of circadian, infradian and ultradian clocks. Specific time scales of different cell types drive their functions: circadian gene regulation at hours scale, activation-inactivation cycles of ion channels at millisecond scales, the heart's beating rate at hundreds of millisecond scales, and low frequency autonomic signaling at cycles of tens of seconds. Heart rate and rhythm are modulated by a hierarchical clock system: autonomic signaling from the brain releases neurotransmitters from the vagus and sympathetic nerves to the heart's pacemaker cells and activate receptors on the cell. These receptors activating ultradian clock functions embedded within pacemaker cells include sarcoplasmic reticulum rhythmic spontaneous Ca2+ cycling, rhythmic ion channel current activation and inactivation, and rhythmic oscillatory mitochondria ATP production. Here we summarize the evidence that intrinsic pacemaker cell mechanisms are the end effector of the hierarchical brain-heart circadian clock system.

3자유도 병렬기구의 위치오차 보정기술에 관한 연구 (A Study on the Error Compensation of Three-DOF Translational Parallel Manipulator)

  • 신욱진;조남규
    • 한국공작기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.44-52
    • /
    • 2004
  • This paper proposed a error compensation methodology for three-DOF translational parallel manipulator. The proposed method uses CMM (coordinate measuring machine) as metrology equipment to measure the position of end-effector. To identify the transform relationships between the coordinate system of the parallel manipulator and the CMM coordinate system, a new coordinate referencing (or coordinate system identification) technique is presented. By using this technique, accurate coordinate transformation relationships are efficiently established. According to these coordinate transformation relationships, an equation to calculate the compensating error components at any arbitrary position of the end-effector is derived. In this paper, Monte Carlo simulation method is applied to simulate the compensation process. Through the simulation results, the proposed error compensation method proves its effectiveness and feasibility.

로봇 캘리브레이션을 위한 모델 파라미터의 관측성 연구 (A Study on Observability of Model Parameters for Robot Calibration)

  • 범진환;양수상;임생기
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.64-71
    • /
    • 1997
  • Objective of calibration is to find out the accurate kinematic relationships between robot joint angles and the position of the end-effector by estimating accurate model parameters defining the kinematic function. Estimating the model parameters requires measurement of the end-effector position at a number of different robot configurations. This paper studies the implication of measurement configurations in robot calibration. For selecting appropriate measurement configurations in robot calibration, an index is defined to measure the observability of the model parameters with respect to a set of robot configurations. It is found that, as the observability index of the selected measurement configurations increase the attribution of the position errors to the parameter errors becomes dominant while the effects of the measurement and unmodeled errors are less significant; consequently better estimation of parameter errors is expected. To demonstrate the implication of the observability measure in robot calibration, computer simulations are performed and their results are discussed.

  • PDF

최적 제어기법을 이용한 다관절 유연 로보트팔의 역동역학 해석 (Inverse Dynamic Analysis of A Flexible Robot Arm with Multiple Joints by Using the Optimal Control Method)

  • Kim, C.B.;Lee, S.H.
    • 한국정밀공학회지
    • /
    • 제10권3호
    • /
    • pp.133-140
    • /
    • 1993
  • In this paper, we prpose a method for tracking optimally a spatial trajectory of the end-effector of flexible robot arms with multiple joints. The proposed method finds joint trajectories and joint torques necessary to produce the desired end-effector motion of flexible manipulator. In inverse kinematics, optimized joint trajectories are computed from elastic equations. In inverse dynamics, joint torques are obtained from the joint euqations by using the optimized joint trajectories. The equations of motion using finite element method and virtual work principle are employed. Optimal control is applied to optimize joint trajectories which are computed in inverse kinematics. The simulation result of a flexible planar manipulator is presented.

  • PDF

여유자유도 로봇의 주기적 운동제어를 위한 역기구학 해의 개발 (The Development of an Inverse Kinematic Solution for Periodic Motion of a Redundant Manipulator)

  • 정용섭;최용제
    • 대한기계학회논문집
    • /
    • 제19권1호
    • /
    • pp.142-149
    • /
    • 1995
  • This paper presents a new kinematic control strategy for serial redundant manipulators which gives repeatability in the joint space when the end-effector undergoes some general cyclic motions. Theoretical development has been accomplished by deriving a new inverse kinematic equation that is based on springs being conceptually located in the joints of the manipulator. Although some inverse kinematic equations for serial redundant manipulators have been derived by many researchers, the new strategy is the first to include the free angles of torsional springs and the free lengths of the translational springs. This is important because it ensures repeatability in the joint space of a serial redundant manipulator whose end-effector undergoes a cyclic type motion. Numerical verification for repeatability is done in terms of Lie Bracket Condition. Choices for the free angle and torsional stiffness of a joint (or the free length and translational stiffness) are made based upon the mechanical limits of the joints.

원격 감시용 카메라의 자동 조향을 위한 Fuzzy 제어 (Fuzzy control of camera pan tilt device for remote surveillance system)

  • 정우태;박영수;윤지섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.811-814
    • /
    • 1993
  • The development of fuzzy pan/tilt controller for remote handling in hostile environment is presented in this paper. In remote handling, control of the camera system is somewhat tedious and time consuming. Operators should do the two tasks of manipulating teleoperator and camera pan/tilt at the same time. By automating pan/tilt control, we expect operators could concentrate only on remote operation. When operators control camera pan/tilt they use simple linguistic rules such as "If the position of end effector on TV monitor is at the edge of the screen, control pan/tilt to display the end effector near the center of the screen." Such a rule is similar to fuzzy logic, so we used fuzzy logic controller to control camera pan/tilt. pan/tilt.

  • PDF

시각정보에 의한 로보트 매니퓰레이터의 위치.자세 제어 - 신경회로망의 이용 (Visral Control of Robotic Manipulators Based on Neural Network)

  • 심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1042-1046
    • /
    • 1993
  • This paper describes a control scheme for a robot manipulator system which uses visual information to position and orientate the end-effector. In this scheme, the position and orientation of the target workpiece with respect to the base frame of the robot are assumed to be unknown, but the desired relative position and orientation of the end-effector to the target workpiece are given in advance. The control scheme directly integrates visual data into the servoing process without subdividing the process into determination of the position and orientation of the workpiece and inverse kinematics calculation. A neural network system is used for determining the change in joint angles required in order to achieve the desired position and orientation. The proposed system can be control the robot so that it approach the desired position and orientation from arbitrary initial ones. Simulation for the robot manipulator with six degrees of freedom will be done. The validity and the effectiveness of the proposed control scheme will be verified by computer simulations.

  • PDF

퍼지신경망을 이용한 로보트의 비쥬얼서보제어 (Visual servo control of robots using fuzzy-neural-network)

  • 서은택;정진현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.566-571
    • /
    • 1994
  • This paper presents in image-based visual servo control scheme for tracking a workpiece with a hand-eye coordinated robotic system using the fuzzy-neural-network. The goal is to control the relative position and orientation between the end-effector and a moving workpiece using a single camera mounted on the end-effector of robot manipulator. We developed a fuzzy-neural-network that consists of a network-model fuzzy system and supervised learning rules. Fuzzy-neural-network is applied to approximate the nonlinear mapping which transforms the features and theire change into the desired camera motion. In addition a control strategy for real-time relative motion control based on this approximation is presented. Computer simulation results are illustrated to show the effectiveness of the fuzzy-neural-network method for visual servoing of robot manipulator.

  • PDF