• 제목/요약/키워드: end anchorage beam

검색결과 34건 처리시간 0.04초

이질구조부 보주근 정착방법에 따른 혼합구조보의 구조적 특성에 관한 연구 (A Study on the Structural Properties of Composite Beam with Attaching Method of Main Bar of Different Types of Structure.)

  • 김상헌;임병호;이승조;박정민;김화중
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.121-126
    • /
    • 2000
  • The attaching method of different types of structure and explanation of stress transfer mechanism are at important issue as beam having definitive factor such as the anchorage of RC main bar, the stress transfer of anchorage-end S member, RC member-anchorage, anchorage-end S member in the composite beam of S and RC member. In this study, the structural properties of composite beam according to attaching method of main bar about end RC-middle S beam were investigated in order to use them as fundamental data for the development of composite structure member. Throughout a series of study, it was shown that the proof stress of main bar - flange welding specimen is the highest and there is no difference between the deformation-properties according to attaching method of main bar.

  • PDF

Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Kamruzzaman, Mohamed;Huda, Md. Nazmul;Soeb, Mahmudur Rahman
    • Structural Engineering and Mechanics
    • /
    • 제56권6호
    • /
    • pp.899-916
    • /
    • 2015
  • Upgrading or strengthening of existing reinforced concrete (RC) infrastructure is an emerging demand nowadays. Near Surface Mounted (NSM) technique is very promising approach for flexural strengthening of RC members. However, premature failure such as concrete cover separation failure have been a main concern in utilizing this technique. In this study, U-wrap end anchorage with carbon fiber reinforced polymer (CFRP) fabrics is proposed to eliminate the concrete cover separation failure. Experimental programs were conducted to the consequence of U-wrap end anchorage on the flexurally strengthened RC beams with NSM-steel. A total of eight RC rectangular beam specimens were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM-steel bars and the remaining four specimens were strengthened with NSM-steel bars and U-wrap end anchorage using CFRP fabrics. A 3D non-linear finite element model (FEM) was developed to simulate the flexural response of the tested specimens. It is revealed that NSM-steel (with and without end-anchors) significantly improved the flexural strength; moreover decreased deflection and strains compared with reference specimen. Furthermore, NSM-steel with end anchorage strengthened specimens revealed the greater flexural strength and improve failure modes (premature to flexure) compared with the NSM-steel without end anchorage specimens. The results also ensured that the U-wrap end anchorage completely eliminate the concrete cover separation failure.

Strain penetration of high-strength steel bars anchored in reinforced concrete beam-column connections

  • Li, Ling;Zheng, Wenzhong;Wang, Ying
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.367-382
    • /
    • 2019
  • This paper presents experimental and analytical investigations on additional fixed-end rotations resulting from the strain penetration of high-strength reinforcement in reinforced concrete (RC) beam-column connections under monotonic loading. The experimental part included the test of 18 interior beam-column connections with straight long steel bars and 24 exterior beam-column connections with hooked and headed steel bars. Rebar strains along the anchorage length were recorded at the yielding and ultimate states. Furthermore, a numerical program was developed to study the effect of strain penetration in beam-column connections. The numerical results showed good agreement with the test results. Finally, 87 simulated specimens were designed with various parameters based on the test specimens. The effect of concrete compressive strength ($f_c$), yield strength ($f_y$), diameter ($d_b$), and anchorage length ($l_{ah}$) of the reinforcement in the beam-column connection was examined through a parametric study. The results indicated that additional fixed-end rotations increased with a decrease in $f_c$ and an increase in $f_y$, $d_b$ and $l_{ah}$. Moreover, the growth rate of additional fixed-end rotations at the yielding state was faster than that at the ultimate state when high-strength steel bars were used.

Experimental study on RC beams externally bonded by CFRP sheets with and without end self-locking

  • Chaoyang Zhou;Yanan Yu;Chengfeng Zhou;Xuejun He;Yi Wang
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.599-610
    • /
    • 2023
  • To avoid debonding failure, a novel type of hybrid anchorage (HA) is proposed in this study that uses a slotted plate to lock the ends of the fiber-reinforced polymer (FRP) sheet in addition to the usual bonding over the substrate of the strengthened member. An experimental investigation was performed on three groups of RC beams, which differed from one another in either concrete strength or steel reinforcement ratio. The test results indicate that the end self-locking of the CFRP sheet can improve the failure ductility, ultimate capacity of the beams and its utilization ratio. Although intermediate debonding occurred in all the strengthened beams, it was not a fatal mode of failure for the three specimens with end anchorage. Among them, FRP rupture occurred in the beam with higher concrete strength and lower steel reinforcement ratio, whereas the other two failed by concrete crushing. The beam strengthened by HA obtained a relatively high percentage of increase in ultimate capacity when the rebar ratio or concrete strength decreased. The expressions in the literature were inspected to calculate the critical loads at intermediate debonding, FRP rupturing and concrete crushing after debonding for the strengthened beam. Then, the necessity of further research is addressed.

Analysis of stress distribution in anchorage zones of pretensioned beams

  • Gens, F.;Dotreppe, J.C.
    • Computers and Concrete
    • /
    • 제1권3호
    • /
    • pp.249-260
    • /
    • 2004
  • The stress transmission mechanism in pretensioned concrete beams, though very interesting from an economical point of view, is very complex, integrating various phenomenons such as sliding, bond, bursting. For long the complexity of this mechanism has led engineers to provide a massive rectangular anchorage zone at each end of the beam. The necessity of using such a concrete reinforcement is certainly unquestionable in post-tensioned beams. However in pretensioned elements the stresses induced in concrete in the anchorage zone are smaller than in post-tensioned elements. In this article the stress field in the end zone is calculated numerically and from this analysis the possible reduction of the cross-section of the anchorage block is examined.

탄소섬유시트로 보강한 RC보의 단부 정착유무에 따른 휨성능 평가 (Evaluation of Flexural Performance of Reinforced Concrete Beams Strengthened by Carbon Fiber Sheet Considering End Anchorage Effect)

  • 이창현;어석홍
    • 한국산업융합학회 논문집
    • /
    • 제25권6_3호
    • /
    • pp.1165-1171
    • /
    • 2022
  • In this paper, the results of an experimental study were presented by measuring and comparing the flexural strength and deformation on the carbon fiber sheet strength reinforced concrete beam considering end anchorage effect. For this purpose, total six specimens of 100×100×600mm size were prepared and tested according to the KDS 14 20 20. The specimens were categorized in three cases as reference beams without strengthening, beams carbon fiber strengthened but not anchored and beams carbon fiber strengthened also anchored. Experimental results showed that the end anchorage contributed to increase the flexural strength about 42% greater than that of carbon fiber sheets alone, and the number and width of cracks were relatively increased. The results support a considerable effects of end anchorage for carbon fiber strengthened reinforced concrete beams in enhancing the flexural performance. Further studies are needed in durability and long term behavior of carbon fiber sheet strengthened reinforced concrete beams.

탄소섬유보강판으로 보강된 철근콘크리트 보의 정착길이 특성 (Characteristics of Anchorage Length for Reinforced Concrete Beam Strengthened by CFRP Plate)

  • 한상훈;최만용;조홍동;박중열;황선일;권용길
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.405-410
    • /
    • 2002
  • This paper deals with the flexural behavior of RC hems strengthened with CFRP plate and the estimation on anchorage length of CFRP Plate. Experimental variables included concrete strength, reinforcement ratio, cover thickness of concrete and length ratio of CFRP plate for a pure span. A failure load, failure mode, deflection and strain response at different distances from a cut-off point of CFRP plate were observed and anchorage length was determined through strain distribution of CFRP plate. Herein, anchorage length is defined the length between CFRP plate end and the beginning point of full composite behavior. Also, the anchorage length observed from the experiment was compared with Nguyen's equation and BS specification.

  • PDF

최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가 (Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces)

  • 유승룡;김대훈
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도 (Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars)

  • 김영록;이창용;김승훈
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제23권5호
    • /
    • pp.111-117
    • /
    • 2019
  • 확대머리 SD600 고강도 인장철근으로 단부 정착된 SFRC 깊은보의 전단성능을 평가하기 위해 전단 실험을 수행하였다. 실험 변수는 주인장 철근의 단부 정착방법(확대머리 철근, 일자형 철근), 단부 정착길이, 전단보강근 유무 등이다. 전단경간비는 1을 가지는 실험체에 대한 전단실험결과, 모든 실험체는 초기 휨 균열이 발생한 후 경사균열이 진행되면서 최종적으로 압축전단파괴되었다. 확대머리 철근으로 기계적 정착된 실험체들이 일자형 철근 정착에 비하여 5.6~22.4% 더 큰 전단강도를 나타내었다. 확대머리 철근으로 기계적 정착된 실험체들에 대하여 최대하중의 75%까지는 지압응력이 전체 정착응력의 0.9~17.2%에 도달하였으나, 최대하중 시점에서 지압응력이 전체 정착응력의 22.4%~46%에 도달하여 큰 응력 부담률을 나타내었다. 이를 통하여 확대머리 지압응력에 의한 정착응력 증가가 전단강도에 큰 영향을 미침을 알 수 있다. 실험 전단강도가 실용식에 의한 전단강도의 2.68~4.65 배로 평가되어, 실용식이 전단내력을 안전측으로 평가하였다.

가로보를 정착구조로 하는 연속화 PSC 합성거더 시공사례 (A Case Study on Continuous Prestressed Concrete Composite Girder with Cross-beam Anchorage System)

  • 박현묘;허영;김윤환;김석태
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2010년도 춘계 학술대회 제22권1호
    • /
    • pp.451-452
    • /
    • 2010
  • PSC I 거더교는 시공성, 경제성, 사용성, 안전성 등 모든 면에서 성능이 매우 우수하여 지금까지 가장 많이 건설되어 온 교량형식이다. 그러나, 국내의 경우에는 표준거더의 형고가 높게 설계되어 장지간화에는 제한적이었다. 따라서, 본 논문에서는 가로보 정착구조를 적용하고 다단계 인장기술을 이용한 연속화 PSC거더의 기술을 개발하는데 그 목적을 두었다.

  • PDF