• Title/Summary/Keyword: encoding

Search Result 4,358, Processing Time 0.033 seconds

Automatic Text Summarization based on Selective Copy mechanism against for Addressing OOV (미등록 어휘에 대한 선택적 복사를 적용한 문서 자동요약)

  • Lee, Tae-Seok;Seon, Choong-Nyoung;Jung, Youngim;Kang, Seung-Shik
    • Smart Media Journal
    • /
    • v.8 no.2
    • /
    • pp.58-65
    • /
    • 2019
  • Automatic text summarization is a process of shortening a text document by either extraction or abstraction. The abstraction approach inspired by deep learning methods scaling to a large amount of document is applied in recent work. Abstractive text summarization involves utilizing pre-generated word embedding information. Low-frequent but salient words such as terminologies are seldom included to dictionaries, that are so called, out-of-vocabulary(OOV) problems. OOV deteriorates the performance of Encoder-Decoder model in neural network. In order to address OOV words in abstractive text summarization, we propose a copy mechanism to facilitate copying new words in the target document and generating summary sentences. Different from the previous studies, the proposed approach combines accurate pointing information and selective copy mechanism based on bidirectional RNN and bidirectional LSTM. In addition, neural network gate model to estimate the generation probability and the loss function to optimize the entire abstraction model has been applied. The dataset has been constructed from the collection of abstractions and titles of journal articles. Experimental results demonstrate that both ROUGE-1 (based on word recall) and ROUGE-L (employed longest common subsequence) of the proposed Encoding-Decoding model have been improved to 47.01 and 29.55, respectively.

LasR Might Act as an Intermediate in Overproduction of Phenazines in the Absence of RpoS in Pseudomonas aeruginosa

  • He, Qiuning;Feng, Zhibin;Wang, Yanhua;Wang, Kewen;Zhang, Kailu;Kai, Le;Hao, Xiuying;Yu, Zhifen;Chen, Lijuan;Ge, Yihe
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1299-1309
    • /
    • 2019
  • As an opportunistic bacterial pathogen, Pseudomonas aeruginosa PAO1 contains two phenazine-producing gene operons, phzA1B1C1D1E1F1G1 (phz1) and phzA2B2C2D2E2F2G2 (phz2), each of which is independently capable of encoding all enzymes for biosynthesizing phenazines, including phenazine-1-carboxylic acid and its derivatives. Other previous study reported that the RpoS-deficient mutant SS24 overproduced pyocyanin, a derivative of phenazine-1-carboxylic acid. However, it is not known how RpoS mediates the expression of two phz operons and regulates pyocyanin biosynthesis in detail. In this study, with deletion of the rpoS gene in the $PA{\Delta}phz1$ mutant and the $PA{\Delta}phz2$ mutant respectively, we demonstrated that RpoS exerted opposite regulatory roles on the expression of the phz1and phz2 operons. We also confirmed that the phz1 operon played a critical role and especially biosynthesized much more phenazines than the phz2 operon when the rpoS gene was knocked out in P. aeruginosa. By constructing the translational reporter fusion vector lasR'-'lacZ and the chromosomal fusion mutant $PA{\Delta}lasR::lacZ$, we verified that RpoS deficiency caused increased expression of lasR, a transcription regulator gene in a first quorum sensing system (las) that activates overexpression of the phz1 operon, suggesting that in the absence of RpoS, LasR might act as an intermediate in overproduction of phenazine biosynthesis mediated by the phz1 operon in P. aeruginosa.

The Hardware Design of Effective Deblocking Filter for HEVC Encoder (HEVC 부호기를 위한 효율적인 디블록킹 하드웨어 설계)

  • Park, Jae-Ha;Park, Seung-yong;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.755-758
    • /
    • 2014
  • In this paper, we propose effective Deblocking Filter hardware architecture for High Efficiency Video Coding encoder. we propose Deblocking Filter hardware architecture with less processing time, filter ordering for low area design, effective memory architecture and four-pipeline for a high performance HEVC(High Efficiency Video Coding) encoder. Proposed filter ordering can be used to reduce delay according to preprocessing. It can be used for realtime single-port SRAM read and write. it can be used in parallel processing by using two filters. Using 10 memory is effective for solving the hazard caused by a single-port SRAM. Also the proposed filter can be used in low-voltage design by using clock gating architecture in 4-pipeline. The proposed Deblocking Filter encoder architecture is designed by Verilog HDL, and implemented by 100k logic gates in TSMC $0.18{\mu}m$ process. At 150MHz, the proposed Deblocking Filter encoder can support 4K Ultra HD video encoding at 30fps, and can be operated at a maximum speed of 200MHz.

  • PDF

Hardware Design of High-Performance SAO in HEVC Encoder for Ultra HD Video Processing in Real Time (UHD 영상의 실시간 처리를 위한 고성능 HEVC SAO 부호화기 하드웨어 설계)

  • Cho, Hyun-pyo;Park, Seung-yong;Ryoo, Kwang-ki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.271-274
    • /
    • 2014
  • This paper proposes high-performance SAO(Sample Adaptive Offset) in HEVC(High Efficiency Video Coding) encoder for Ultra HD video processing in real time. SAO is a newly adopted technique belonging to the in-loop filter in HEVC. The proposed SAO encoder hardware architecture uses three-layered buffers to minimize memory access time and to simplify pixel processing and also uses only adder, subtractor, shift register and feed-back comparator to reduce area. Furthermore, the proposed architecture consists of pipelined pixel classification and applying SAO parameters, and also classifies four consecutive pixels into EO and BO concurrently. These result in the reduction of processing time and computation. The proposed SAO encoder architecture is designed by Verilog HDL, and implemented by 180k logic gates in TSMC $0.18{\mu}m$ process. At 110MHz, the proposed SAO encoder can support 4K Ultra HD video encoding at 30fps in real time.

  • PDF

Local Prominent Directional Pattern for Gender Recognition of Facial Photographs and Sketches (Local Prominent Directional Pattern을 이용한 얼굴 사진과 스케치 영상 성별인식 방법)

  • Makhmudkhujaev, Farkhod;Chae, Oksam
    • Convergence Security Journal
    • /
    • v.19 no.2
    • /
    • pp.91-104
    • /
    • 2019
  • In this paper, we present a novel local descriptor, Local Prominent Directional Pattern (LPDP), to represent the description of facial images for gender recognition purpose. To achieve a clearly discriminative representation of local shape, presented method encodes a target pixel with the prominent directional variations in local structure from an analysis of statistics encompassed in the histogram of such directional variations. Use of the statistical information comes from the observation that a local neighboring region, having an edge going through it, demonstrate similar gradient directions, and hence, the prominent accumulations, accumulated from such gradient directions provide a solid base to represent the shape of that local structure. Unlike the sole use of gradient direction of a target pixel in existing methods, our coding scheme selects prominent edge directions accumulated from more samples (e.g., surrounding neighboring pixels), which, in turn, minimizes the effect of noise by suppressing the noisy accumulations of single or fewer samples. In this way, the presented encoding strategy provides the more discriminative shape of local structures while ensuring robustness to subtle changes such as local noise. We conduct extensive experiments on gender recognition datasets containing a wide range of challenges such as illumination, expression, age, and pose variations as well as sketch images, and observe the better performance of LPDP descriptor against existing local descriptors.

Evaluation of Image Usability by SEMAC Turbo Factor Change using Susceptibility Artifact Reduction (Susceptibility Artifact를 감소시키는 SEMAC 사용 시 Turbo Factor 변화에 따른 영상의 유용성 평가)

  • Choi, Young-Jae;Kim, Sang-Hyun
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • The study analyzes Non SEMAC and SEMAC to reduce susceptibility artifacts that may occur when performing magnetic resonance imaging(MRI) of metal patients. The Foot and Ankle Phantom was used as the experimental tool and the 3.8 cm general screw was used to make the magnetic susceptibility artifact. The experimental equipment was used 3.0T Magnetom Skyra and the area was measured with the 17th image where the signal off is the most noticeable in the obtained image. Statistical analysis was performed using the SPSS(Ver.25) program and the significance was assessed by the Wilcoxon Signed Rank Test. As a result, the area of Non SEMAC which is the lowest signal was $289.53{\pm}23.07197mm$. When the Turbo Factor was changed to 3, 4, and 5 after SEMAC use, it decreased to $125.02{\pm}7.45875mm$, $120.96{\pm}12.01704mm$ and $108.79{\pm}16.53498mm$, respectively. In conclusion, this study demonstrates that Using SEMAC with Turbo Factor effectively reduces the susceptibility artifacts.

Construction of a Genetic Map using the SSR Markers Derived from "Wonwhang" of Pyrus pyrifolia (배 '원황'(Pyrus pyrifolia) 유전체 해독에 기반한 SSR 마커 개발 및 유전자 지도 작성)

  • Lee, Ji Yun;Seo, Mi-Suk;Won, So Youn;Lim, Kyoung Ah;Shin, Il Sheob;Choi, Dongsu;Kim, Jung Sun
    • Korean Journal of Breeding Science
    • /
    • v.50 no.4
    • /
    • pp.434-441
    • /
    • 2018
  • High-density genetic linkage mapping is critical for undertaking marker-assisted selection and confirming quantitative trait loci, as well as helping to build pseudomolecules of genomes. We constructed a genetic map using 94 $F_1$ populations generated from the interspecific cross between Korean cultivar "Wonwhang" (Pyrus pyrifolia, NCBI BioSample SAMN05196235) and European cultivar "Bartlett" (Pyrus communis). We designed a total of 24,267 SSR markers based on the genome sequences of "Wonwhang" for this. To select the markers that are linked to the traits important in pear breeding programs, SSR-containing genomic sequences were subjected to nucleotide sequence homology searches, which resulted in 510 SSR markers with high similarity to genes encoding proteins with putative functions such as transcription factors, resistance proteins, flowering time, and regulatory genes. Of these, 70 markers showed polymorphisms in parents and segregating populations and were used to construct a genetic linkage map, together with the unpublished 579 SNPs obtained from genotyping by sequencing analysis. The genetic linkage map covered 3,784.2 cM and the average distance between adjacent markers was 5.8 cM. Seventy SSR markers were distributed across 17 chromosomes with more than one locus.

Genome-wide identification and analysis of long noncoding RNAs in longissimus muscle tissue from Kazakh cattle and Xinjiang brown cattle

  • Yan, Xiang-Min;Zhang, Zhe;Liu, Jian-Bo;Li, Na;Yang, Guang-Wei;Luo, Dan;Zhang, Yang;Yuan, Bao;Jiang, Hao;Zhang, Jia-Bao
    • Animal Bioscience
    • /
    • v.34 no.11
    • /
    • pp.1739-1748
    • /
    • 2021
  • Objective: In recent years, long noncoding RNAs (lncRNAs) have been identified in many species, and some of them have been shown to play important roles in muscle development and myogenesis. However, the differences in lncRNAs between Kazakh cattle and Xinjiang brown cattle remain undefined; therefore, we aimed to confirm whether lncRNAs are differentially expressed in the longissimus dorsi between these two types of cattle and whether differentially expressed lncRNAs regulate muscle differentiation. Methods: We used RNA-seq technology to identify lncRNAs in longissimus muscles from these cattle. The expression of lncRNAs were analyzed using StringTie (1.3.1) in terms of the fragments per kilobase of transcript per million mapped reads values of the encoding genes. The differential expression of the transcripts in the two samples were analyzed using the DESeq R software package. The resulting false discovery rate was controlled by the Benjamini and Hochberg's approach. KOBAS software was utilized to measure the expression of different genes in Kyoto encyclopedia of genes and genomes pathways. We randomly selected eight lncRNA genes and validated them by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Results: We found that 182 lncRNA transcripts, including 102 upregulated and 80 downregulated transcripts, were differentially expressed between Kazakh cattle and Xinjiang brown cattle. The results of RT-qPCR were consistent with the sequencing results. Enrichment analysis and functional annotation of the target genes revealed that the differentially expressed lncRNAs were associated with the mitogen-activated protein kinase, Ras, and phosphatidylinositol 3-kinase (PI3k)/Akt signaling pathways. We also constructed a lncRNA/mRNA coexpression network for the PI3k/Akt signaling pathway. Conclusion: Our study provides insights into cattle muscle-associated lncRNAs and will contribute to a more thorough understanding of the molecular mechanism underlying muscle growth and development in cattle.

Implementation of RSA modular exponentiator using Division Chain (나눗셈 체인을 이용한 RSA 모듈로 멱승기의 구현)

  • 김성두;정용진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.2
    • /
    • pp.21-34
    • /
    • 2002
  • In this paper we propos a new hardware architecture of modular exponentiation using a division chain method which has been proposed in (2). Modular exponentiation using the division chain is performed by receding an exponent E as a mixed form of multiplication and addition with divisors d=2 or $d=2^I +1$ and respective remainders r. This calculates the modular exponentiation in about $1.4log_2$E multiplications on average which is much less iterations than $2log_2$E of conventional Binary Method. We designed a linear systolic array multiplier with pipelining and used a horizontal projection on its data dependence graph. So, for k-bit key, two k-bit data frames can be inputted simultaneously and two modular multipliers, each consisting of k/2+3 PE(Processing Element)s, can operate in parallel to accomplish 100% throughput. We propose a new encoding scheme to represent divisors and remainders of the division chain to keep regularity of the data path. When it is synthesized to ASIC using Samsung 0.5 um CMOS standard cell library, the critical path delay is 4.24ns, and resulting performance is estimated to be abort 140 Kbps for a 1024-bit data frame at 200Mhz clock In decryption process, the speed can be enhanced to 560kbps by using CRT(Chinese Remainder Theorem). Futhermore, to satisfy real time requirements we can choose small public exponent E, such as 3,17 or $2^{16} +1$, in encryption and verification process. in which case the performance can reach 7.3Mbps.

Design of an Effective Deep Learning-Based Non-Profiling Side-Channel Analysis Model (효과적인 딥러닝 기반 비프로파일링 부채널 분석 모델 설계방안)

  • Han, JaeSeung;Sim, Bo-Yeon;Lim, Han-Seop;Kim, Ju-Hwan;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1291-1300
    • /
    • 2020
  • Recently, a deep learning-based non-profiling side-channel analysis was proposed. The deep learning-based non-profiling analysis is a technique that trains a neural network model for all guessed keys and then finds the correct secret key through the difference in the training metrics. As the performance of non-profiling analysis varies greatly depending on the neural network training model design, a correct model design criterion is required. This paper describes the two types of loss functions and eight labeling methods used in the training model design. It predicts the analysis performance of each labeling method in terms of non-profiling analysis and power consumption model. Considering the characteristics of non-profiling analysis and the HW (Hamming Weight) power consumption model is assumed, we predict that the learning model applying the HW label without One-hot encoding and the Correlation Optimization (CO) loss will have the best analysis performance. And we performed actual analysis on three data sets that are Subbytes operation part of AES-128 1 round. We verified our prediction by non-profiling analyzing two data sets with a total 16 of MLP-based model, which we describe.