• Title/Summary/Keyword: enantioselective lipase

Search Result 18, Processing Time 0.026 seconds

Molecular Cloning and Functional Expression of esf Gene Encoding Enantioselective Lipase from Serratia marcescens ES-2 for Kinetic Resolution of Optically Active (S)-Flurbiprofen

  • Lee, Kwang-Woo;Bae, Hyun-Ae;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.1
    • /
    • pp.74-80
    • /
    • 2007
  • An enantioselective lipase gene (esf) for the kinetic resolution of optically active (S)-flurbiprofen was cloned from the new strain Serratia marcescens ES-2. The esf gene was composed of a 1,845-bp open reading frame encoding 614 amino acid residues with a calculated molecular mass of 64,978 Da. The lipase expressed in E. coli was purified by a three-step procedure, and it showed preferential substrate specificity toward the medium-chain-length fatty acids. The esf gene encoding the enantioselective lipase was reintroduced into the parent strain S. marcescens ES-2 for secretory overexpression. The transformant S. marcescens BESF secreted up to 217kU/ml of the enantioselective lipase, about 54-fold more than the parent strain, after supplementing 3.0% Triton X-207. The kinetic resolution of (S)-flurbiprofen was carried out even at an extremely high (R,S)-flurbiprofen ethyl ester [(R,S)-FEE] concentration of 500 mM, 130 kU of the S. marcescens ES-2 lipase per mmol of (R,S)-FEE, and 1,000 mM of succinyl ${\beta}-cyclodextrin$ as the dispenser at $37^{\circ}C$ for 12h, achieving the high enantiomeric excess and conversion yield of 98% and 48%, respectively.

Enantioselective Hydrolysis of (R,S)-Naproxen Methyl Ester Using Two-step Acetone-treated Candida rugosa Lipase (2단계 아세톤 침전법으로부터 얻어진 Candida rugosa Lipase를 이용한 (R,S)-Naproxen Ester의 광학선택성 수화반응)

  • 이은교;최순자;정봉현
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.4
    • /
    • pp.223-227
    • /
    • 2000
  • A novel two-step acetone treatment method was developed to enhance the enantioselectivity of Candida rugosa lipase (CRL) toward the hydrolysis of racemic naproxen methyl ester. The acetone-teated CRL was considerably more enantioselective than the crude CRL, yielding an enantiomeric excess of 98~100%. The crude and acetone-treated CRLs were subjected to anion exchange chromatography, and their chromatography profiles were compared. In consequence, both chromatography profiles were found to be almost identical, resulting in two separate lipase peaks (lipase A and B). The lipase B, which is known to be less enantioselective, was treated with acetone using a two-step treatment method. The enantioselectivity of acetone-treated lipase B was dramatically increased, yielding an enantiomeric excess of 99%.

  • PDF

Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

  • Shafioul, Azam Sharif Mohammed;Cheong, Chan-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.409-414
    • /
    • 2012
  • Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = $80{\pm}3$) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = $27{\pm}1$) for R-(+)-2-(3-methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one.

Enantioselective Hydrolysis for the Precursor of Azole-containing Compounds using Acinetobacter sp. SY-01 Lipase and Increase of Enantioselectivity by the Removal of Reaction Products (Acinetobacter sp. SY-01 Lipase를 이용한 아졸계 화합물 전구체에 대한 광학선택적 가수분해 반응과 생성물 제거에 의한 광학선택성 증가)

  • 윤문영;신평균;정찬성;박정극
    • KSBB Journal
    • /
    • v.18 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Screening of a strain was carried out to produce an enantioselective lipase toward the precursor of ltraconazole as azole-containg compounds, which are well known as antifungal drug agents. An Acinetobacter sp. SY-01 strain which can selectively hydrolyze the racemic substrates was isolated and the racemic substrate was resolved to the S-ester in 95.6% enantiomeric excess after 74.8% hydrolysis. The optimum temperature and pH for the conversion were $50^{\circ}C$, pH 7.0. However, the temperature and pH had no effect on the enantiomeric excess. Addition of solvents decreased the conversion and slightly increased the enantiomeric excess. However, the kind of solvents had no effect on enantiomeric excess. The substrate concentration decrease enantiomeric excess and this is confirmed by the products generated from hydrolysis, and also enantiomeric excess could be increased by the removal of reaction products.

Production of Enantioselective Lipase from Acinetobacter sp. SY-01 (Acinetobacter sp. SY-01로부터 Enantioselective Lipase의 생산)

  • 박대원;박호일;신평균
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.2
    • /
    • pp.145-150
    • /
    • 2003
  • Lipase from Acinetobacter sp. SY-01 plays an important role enzyme that products chiral drug. We investigated optimum condition for mass production of Acinetobacter sp. SY-01 lipase. Addition of among the different oils to medium. olive oil was optimal for enzyme production. When 0.2% olive oil was added as a carbon source, the production of lipase was increased to a maximum. The optimum pH and temperature were pH 7 and $30^{\circ}C$. In the presence of $Fe^{2+}$ and $Ca^{2+}$, the lipase activity was dramatically enhanced by 280% and 160%, respectively. SY-01 lipase was stable in the most of the DMSO among organic solvents. The addition of triton-X 100 increased the SY-01 lipase by 100-fold. The optimum composition of medium for production of the enzyme was 0.8% yeast extract, 0.2% olive oil, 0.4% triton X-100+40% DMSO. 0.1% $NH_4Cl$, 0.4% $K_2HPO_4$ 3.9% $NaH_2PO_4$, 0.03% $CaCl_22H_2O$, 0.01% $FeSO_4$$7H_2O$(pH 7.0).

Development of Magnetically Separable Immobilized Lipase by Using Cellulose Derivatives and Their Application in Enantioselective Esterification of Ibuprofen

  • Lee, Go-Woun;Joo, Hong-Il;Kim, Jung-Bae;Lee, Jung-Heon
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.465-471
    • /
    • 2008
  • Highly active, stable, and magnetically separable immobilized enzymes were developed using carboxymethyl cellulose (CMC) and diethylaminoethyl cellulose DEAE-C; hereafter designated "DEAE" as supporting materials. Iron oxide nanoparticles penetrated the micropores of the supporting materials, rendering them magnetically separable. Lipase (LP) was immobilized on the surface of the supporting materials by using cross-linked enzyme aggregation (CLEA) by glutaraldehyde. The activity of enzyme aggregates coated on DEAE was approximately 2 times higher than that of enzyme aggregates coated on CMC. This is explained by the fact that enzyme aggregates with amine residues are more efficient than those with carboxyl residues. After a 96-h enantioselective ibuprofen esterification reaction, 6% ibuprofen propyl ester was produced from the racemic mixture of ibuprofen by using DEAE-LP, and 2.8% using CMC-LP.

Lipase-catalyzed Remote Kinetic Resolution of Quaternary Carbon-containing Alcohols and Determination of Their Absolute Configuration

  • Im, Dai-Sig;Cheong, Chan-Seong;Lee, So-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.9
    • /
    • pp.1269-1275
    • /
    • 2003
  • The quaternary carbon-containing alcohols (1-6) were resolved enantioselectively by various lipases such as PFL (Pseudomonas fluorescens lipase), LAK (Pseudomonas fluorescens lipase), CRL (Candida rugosa lipase) and PCL (Pseudomonas cepacia lipase). The enzymatic resolution of racemic alcohol $({\pm})-2$ gave the excellent enantioselectivity in favor of (S)-2d in 99% ee, while those of the racemic alcohols (1, 3, 4, 5 and 6) gave the resolved alcohols with moderate to good enantioselectivity. Also, their absolute configurations were determined by chemical transformation to the known compounds.