• Title/Summary/Keyword: enantioselective

Search Result 202, Processing Time 0.02 seconds

Application of Chiral Ligands Heterogenized over Solid Supports on Enantioselective Catalysis (고체 담체에 고정화된 키랄리간드의 비대칭 촉매반응에의 응용)

  • Lee, Kwang-Yeon;Kawthekar, Rahul B.;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.17 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • The trend towards the application of single enantiomers of chiral compounds is undoubtedly increasing. Among the various methods to obtain one single enantio-riched compound selectively, enantioselective catalysis is the most attractive method. Especially, it is important to increase the activity, selectivity and lifetime of usually expensive chiral catalysts with a minute quantity in the enantioselective synthesis. Immobilization of active homogeneous catalysts is a fashionable topic in asymmetric catalysis, providing the inherent advantage of easy separation and better handling properties. Many different ways have been investigated to improve the enantioselectivity of products and to recycle the catalysts. This review mainly focused on the present scope and limitations of different types of enantioselective heterogeneous catalysts.

Production of Chiral Styrene Oxide by Microbial Enantioselective Hydrolysis Reaction (미생물 입체선택성 가수분해 반응을 이용한 광학활성 Styrene Oxide 생산)

  • 윤성준;이은열
    • KSBB Journal
    • /
    • v.15 no.6
    • /
    • pp.630-634
    • /
    • 2000
  • Chiral epoxides are useful chiral synthons in organic synthesis, and various biological methods have been investigated for their production. In this work, the enantioselective resolution of racemic styrene oxide was investigated using Aspergillus niger sp. for the production of optically pure (S)-styrene oxide. The enantioselectivity and initial hydrolysis rates of the racemic substrate were highly dependent of the pH, temperature, and the volume ratio of cosolvent. Experimental sets of pH, temperature, and the volume ratio of cosolvent were investigated using a central composite experimental design, and reaction conditions were optimized by response surface analysis. The optimal conditions of pH, temperature, and the volume ratio of cosolvent were determined to be 7.78, $28.32^{\circ}C$, and 2.4%(v/v), respectively, and optically pure (S)-styrene oxide (>99% ee) was obtained at 35% yield using this microbial enantioselective hydrolysis reaction.

  • PDF

Enantioselective Total Synthesis of (-)-Clavosolide A and B

  • Son, Jung-Beom;Kim, Si-Nae;Kim, Na-Yeong;Hwang, Min-Ho;Lee, Won-Sun;Lee, Duck-Hyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.3
    • /
    • pp.653-663
    • /
    • 2010
  • Enantioselective total synthesis of (-)-clavosolide A and B was reported in full including the synthesis of proposed structure of (-)-clavosoldie A (1), revised structure of (-)-clavosoldie A (5), and revised structure of (-)-clavosoldie B (6). The relative and absolute stereochemistries of the natural products were confirmed unambiguously by comparing the optical rotation values and $^1H$ and $^{13}C$ NMR spectra of them.

Synthesis of solid enantioselective macromer of trimesic acid for the enantiomeric separation of chiral alcohols

  • Ingole, Pravin G.;Bajaj, Hari C.;Singh, Kripal
    • Advances in materials Research
    • /
    • v.2 no.1
    • /
    • pp.51-64
    • /
    • 2013
  • Enantioselective macromer of trimesic acid was prepared using S(-) menthol with trimesoyl chloride on polyimide (PI) ultrafiltration membrane. The chemical composition of macromer as well as polyimide ultrafiltration membrane was determined by ATR-FTIR Spectroscopy. The optical resolution of chiral alcohols was performed in pressure driven process. The effect of monomer solutions concentration, effect of air-drying time of S(-) menthol solution, effect of reaction time, effect of operating pressure, effect of feed concentration of racemate on the performance of macromer was studied. The synthesised material exhibits separation of chiral alcohols (menthol ~23% and sobrelol ~21%).

Lipase Catalyzed Kinetic Resolution of rac-2-(3-Methoxy-4-methylphenyl) propan-1-ol and rac-2-(3-Hydroxy-4-methylphenyl)propyl propanoate for S-(+)-Xanthorrhizol

  • Shafioul, Azam Sharif Mohammed;Cheong, Chan-Seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.409-414
    • /
    • 2012
  • Xanthorrhizol is a bisabolane type of natural sesquiterpene, the major component of essential oils of Curcuma xanthorrhiza. 2-(3-Methoxy-4-methylphenyl)propan-1-ol and 2-(3-hydroxy-4-methyl phenyl)propan-1-ol could be essential building block for enantioselective synthesis of xanthorrhizol. Enantioselective (c = 53%, E = $80{\pm}3$) for R-(+)-2-(3-hydroxy-4-methylphenyl) propan-1-ol and (c = 58%, E = $27{\pm}1$) for R-(+)-2-(3-methoxy-4-methylphenyl) propan-1-ol resolution processes were developed via lipase-catalyzed reaction. We found lipase Aspergillus oryzae (AOL) and Porcine pancreas (PPL) are selective to transesterification and hydrolysis in organic and aqueous phase. Modified demethylated substrate is appropriate for enantioselective hydrolysis reaction without any additives. Enantiopure chiral alcohol was crystallized from ethyl acetate/n-hexane co-solvent system. Gram scale resolved chiral intermediate will facilitate the synthesis of the unnatural S-(+)-xanthorrhizol, the corresponding isomer of the natural one.