• Title/Summary/Keyword: enabling technology

Search Result 859, Processing Time 0.025 seconds

Closed Integral Form Expansion for the Highly Efficient Analysis of Fiber Raman Amplifier (라만증폭기의 효율적인 성능분석을 위한 라만방정식의 적분형 전개와 수치해석 알고리즘)

  • Choi, Lark-Kwon;Park, Jae-Hyoung;Kim, Pil-Han;Park, Jong-Han;Park, Nam-Kyoo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.3
    • /
    • pp.182-190
    • /
    • 2005
  • The fiber Raman amplifier(FRA) is a distinctly advantageous technology. Due to its wider, flexible gain bandwidth, and intrinsically lower noise characteristics, FRA has become an indispensable technology of today. Various FRA modeling methods, with different levels of convergence speed and accuracy, have been proposed in order to gain valuable insights for the FRA dynamics and optimum design before real implementation. Still, all these approaches share the common platform of coupled ordinary differential equations(ODE) for the Raman equation set that must be solved along the long length of fiber propagation axis. The ODE platform has classically set the bar for achievable convergence speed, resulting exhaustive calculation efforts. In this work, we propose an alternative, highly efficient framework for FRA analysis. In treating the Raman gain as the perturbation factor in an adiabatic process, we achieved implementation of the algorithm by deriving a recursive relation for the integrals of power inside fiber with the effective length and by constructing a matrix formalism for the solution of the given FRA problem. Finally, by adiabatically turning on the Raman process in the fiber as increasing the order of iterations, the FRA solution can be obtained along the iteration axis for the whole length of fiber rather than along the fiber propagation axis, enabling faster convergence speed, at the equivalent accuracy achievable with the methods based on coupled ODEs. Performance comparison in all co-, counter-, bi-directionally pumped multi-channel FRA shows more than 102 times faster with the convergence speed of the Average power method at the same level of accuracy(relative deviation < 0.03dB).

Evaluation of Applicability of Sea Ice Monitoring Using Random Forest Model Based on GOCI-II Images: A Study of Liaodong Bay 2021-2022 (GOCI-II 영상 기반 Random Forest 모델을 이용한 해빙 모니터링 적용 가능성 평가: 2021-2022년 랴오둥만을 대상으로)

  • Jinyeong Kim;Soyeong Jang;Jaeyeop Kwon;Tae-Ho Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1651-1669
    • /
    • 2023
  • Sea ice currently covers approximately 7% of the world's ocean area, primarily concentrated in polar and high-altitude regions, subject to seasonal and annual variations. It is very important to analyze the area and type classification of sea ice through time series monitoring because sea ice is formed in various types on a large spatial scale, and oil and gas exploration and other marine activities are rapidly increasing. Currently, research on the type and area of sea ice is being conducted based on high-resolution satellite images and field measurement data, but there is a limit to sea ice monitoring by acquiring field measurement data. High-resolution optical satellite images can visually detect and identify types of sea ice in a wide range and can compensate for gaps in sea ice monitoring using Geostationary Ocean Color Imager-II (GOCI-II), an ocean satellite with short time resolution. This study tried to find out the possibility of utilizing sea ice monitoring by training a rule-based machine learning model based on learning data produced using high-resolution optical satellite images and performing detection on GOCI-II images. Learning materials were extracted from Liaodong Bay in the Bohai Sea from 2021 to 2022, and a Random Forest (RF) model using GOCI-II was constructed to compare qualitative and quantitative with sea ice areas obtained from existing normalized difference snow index (NDSI) based and high-resolution satellite images. Unlike NDSI index-based results, which underestimated the sea ice area, this study detected relatively detailed sea ice areas and confirmed that sea ice can be classified by type, enabling sea ice monitoring. If the accuracy of the detection model is improved through the construction of continuous learning materials and influencing factors on sea ice formation in the future, it is expected that it can be used in the field of sea ice monitoring in high-altitude ocean areas.

Study on 3D Printer Suitable for Character Merchandise Production Training (캐릭터 상품 제작 교육에 적합한 3D프린터 연구)

  • Kwon, Dong-Hyun
    • Cartoon and Animation Studies
    • /
    • s.41
    • /
    • pp.455-486
    • /
    • 2015
  • The 3D printing technology, which started from the patent registration in 1986, was a technology that did not attract attention other than from some companies, due to the lack of awareness at the time. However, today, as expiring patents are appearing after the passage of 20 years, the price of 3D printers have decreased to the level of allowing purchase by individuals and the technology is attracting attention from industries, in addition to the general public, such as by naturally accepting 3D and to share 3D data, based on the generalization of online information exchange and improvement of computer performance. The production capability of 3D printers, which is based on digital data enabling digital transmission and revision and supplementation or production manufacturing not requiring molding, may provide a groundbreaking change to the process of manufacturing, and may attain the same effect in the character merchandise sector. Using a 3D printer is becoming a necessity in various figure merchandise productions which are in the forefront of the kidult culture that is recently gaining attention, and when predicting the demand by the industrial sites related to such character merchandise and when considering the more inexpensive price due to the expiration of patents and sharing of technology, expanding opportunities and sectors of employment and cultivating manpower that are able to engage in further creative work seems as a must, by introducing education courses cultivating manpower that can utilize 3D printers at the education field. However, there are limits in the information that can be obtained when seeking to introduce 3D printers in school education. Because the press or information media only mentions general information, such as the growth of the industrial size or prosperous future value of 3D printers, the research level of the academic world also remains at the level of organizing contents in an introductory level, such as by analyzing data on industrial size, analyzing the applicable scope in the industry, or introducing the printing technology. Such lack of information gives rise to problems at the education site. There would be no choice but to incur temporal and opportunity expenses, since the technology would only be able to be used after going through trials and errors, by first introducing the technology without examining the actual information, such as through comparing the strengths and weaknesses. In particular, if an expensive equipment introduced does not suit the features of school education, the loss costs would be significant. This research targeted general users without a technology-related basis, instead of specialists. By comparing the strengths and weaknesses and analyzing the problems and matters requiring notice upon use, pursuant to the representative technologies, instead of merely introducing the 3D printer technology as had been done previously, this research sought to explain the types of features that a 3D printer should have, in particular, when required in education relating to the development of figure merchandise as an optional cultural contents at cartoon-related departments, and sought to provide information that can be of practical help when seeking to provide education using 3D printers in the future. In the main body, the technologies were explained by making a classification based on a new perspective, such as the buttress method, types of materials, two-dimensional printing method, and three-dimensional printing method. The reason for selecting such different classification method was to easily allow mutual comparison of the practical problems upon use. In conclusion, the most suitable 3D printer was selected as the printer in the FDM method, which is comparatively cheap and requires low repair and maintenance cost and low materials expenses, although rather insufficient in the quality of outputs, and a recommendation was made, in addition, to select an entity that is supportive in providing technical support.

The Comparison of Quantitative Accuracy Between Energy Window-Based and CT-Based Scatter Correction Method in SPECT/CT Images (SPECT/CT 영상에서 에너지창 기반 산란보정과 CT 기반 산란보정 방법의 정량적 정확성 비교)

  • Kim, Ji-Hyeon;Son, Hyeon-Soo;Lee, Juyoung;Park, Hoon-Hee
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.19 no.2
    • /
    • pp.93-101
    • /
    • 2015
  • Purpose In SPECT image, scatter count is the cause of quantitative count error and image quality degradation. Thus, a wide range of scatter correction(SC) methods have been studied and this study is to evaluate the accuracy of CT based SC(CTSC) used in SPECT/CT as the comparison with existing energy window based SC(EWSC). Materials and Methods SPECT/CT images were obtained after filling air in order to acquire a reference image without the influence of scatter count inside the Triple line insert phantom setting hot rod(74.0 MBq) in the middle and each SPECT/CT image was obtained each separately after filling water instead of air in order to derive the influence of scatter count under the same conditions. In both conditions, Astonish(iterative : 4 subset : 16) reconstruction method and CT attenuation correction were commonly applied and three types of SC methods such as non-scatter correction(NSC), EWSC, CTSC were used in images filled with image. For EWSC, 9 sub-energy windows were set additionally in addition to main(=peak) energy window(140 keV, 20%) and then, images were acquired at the same time and five types of EWSC including DPW(dual photo-peak window)10%, DEW(dual energy window)20%, TEW(triple energy window)10%, TEW5.0%, TEW2.5% were used. Under the condition without fluctuations in primary count, total count was measured by drawing volume of interest (VOI) in the images of the two conditions and then, the ratio of scatter count of total counts was calculated as percent scatter fraction(%SF) and the count error with image filled with water was evaluated with percent normalized mean-square error(%NMSE) based on the image filled with air. Results Based on the image filled with air, %SF of images filled with water to which each SC method was applied is NSC 37.44, DPW 27.41, DEW 21.84, TEW10% 19.60, TEW5% 17.02, TEW2.5% 14.68, CTSC 5.57 and the most scattering counts were removed in CTSC and %NMSE is NSC 35.80, DPW 14.28, DEW 7.81, TEW10% 5.94, TEW5% 4.21, TEW2.5% 2.96, CTSC 0.35 and the error in CTSC was found to be the lowest. Conclusion In SPECT/CT images, the application of each scatter correction method used in the experiment could improve the quantitative count error caused by the influence of scatter count. In particular, CTSC showed the lowest %NMSE(=0.35) compared to existing EWSC methods, enabling relatively accurate scatter correction.

  • PDF

Correlation Analyses on Body Size Traits, Carcass Traits and Primal Cuts in Hanwoo Steers (한우 후대검정우 체척, 도체형질 및 부분육간 상관분석)

  • Lee, Jae Gu;Lee, Seung Soo;Cho, Kwang Hyun;Cho, Chungil;Choy, Yun Ho;Choi, Jae Gwan;Park, Byoungho;Na, Chong Sam;Choi, Taejeong
    • Journal of Animal Science and Technology
    • /
    • v.55 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • This study was conducted to estimate the correlation structure between body size traits, carcass traits, and primal cuts in Hanwoo steers. Hanwoo progeny test data (body weight and body measurements) were collected from 2008 to 2010 from a total of 882 steers at the Hanwoo Improvement Main Center (NACF). Carcass traits considered were cold carcass weight, eye muscle area, backfat thickness, and marbling scores evaluated at the time of carcass grading. Correlation analyses were performed with observed scales of the traits and with residuals considering fixed environmental effects in generalized linear models. The correlation coefficient estimated between loin weight and chest girth was high at 0.74. The shank negatively correlated with pelvic width (-0.23) and hipbone width (-0.27). In addition, rib weight and chest girth was highly correlated (0.80). The correlation between carcass weight and chest girth was 0.86 in observed scale. Residual correlation between these traits was estimated at 0.65. Correlation between carcass weight and loin was 0.87 in the observed scale. Residual correlation was estimated at 0.83. The correlation coefficient estimated between shank weight and brisket and flank weight was negative at -0.69. Chest girth had a high correlation between primal cuts weight and body measurements. Thus, we believe that these results will provide a greater understanding on the relationship of primal cuts and other phenotypes, thus enabling valid production models for Hanwoo steers.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Assessment of Positioning Accuracy of UAV Photogrammetry based on RTK-GPS (RTK-GPS 무인항공사진측량의 위치결정 정확도 평가)

  • Lee, Jae-One;Sung, Sang-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.63-68
    • /
    • 2018
  • The establishment of Ground Control Points (GCPs) in UAV-Photogrammetry is a working process that requires the most time and expenditure. Recently, the rapid developments of navigation sensors and communication technologies have enabled Unmanned Aerial Vehicles (UAVs) to conduct photogrammetric mapping without using GCP because of the availability of new methods such as RTK (Real Time Kinematic) and PPK (Post Processed Kinematic) technology. In this study, an experiment was conducted to evaluate the potential of RTK-UAV mapping with no GCPs compared to that of non RTK-UAV mapping. The positioning accuracy results produced by images obtained simultaneously from the two different types of UAVs were compared and analyzed. One was a RTK-UAV without GCPs and the other was a non RTK-UAV with different numbers of GCPs. The images were taken with a Canon IXUS 127 camera (focal length 4.3mm, pixel size $1.3{\mu}m$) at a flying height of approximately 160m, corresponding to a nominal GSD of approximately 4.7cm. As a result, the RMSE (planimetric/vertical) of positional accuracy according to the number of GCPs by the non-RTK method was 4.8cm/8.2cm with 5 GCPs, 5.4cm/10.3cm with 4 GCPs, and 6.2cm/12.0cm with 3 GCPs. In the case of non RTK-UAV photogrammetry with no GCP, the positioning accuracy was decreased greatly to approximately 112.9 cm and 204.6 cm in the horizontal and vertical coordinates, respectively. On the other hand, in the case of the RTK method with no ground control point, the errors in the planimetric and vertical position coordinates were reduced remarkably to 13.1cm and 15.7cm, respectively, compared to the non-RTK method. Overall, UAV photogrammetry supported by RTK-GPS technology, enabling precise positioning without a control point, is expected to be useful in the field of spatial information in the future.

Evaluation of Image Quality Using CT Attenuation Correction in SPECT/CT (SPECT/CT에서 CT감쇠보정에 따른 영상의 질 평가)

  • Cho, Sung Wook;Kim, Gye Hwan;Sung, Yong Joon;Lee, Hyung Jin;Kim, Jin Eui
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.78-83
    • /
    • 2013
  • Purpose: SPECT/CT, a combination of SPECT and CT, is capable of expressing the results of attenuation correction on images biased by automatic program. As a result, this research evaluates the usefulness of images with CT attenuation correction, using various phantoms and images of patients. Materials and Methods: From July of 2012 to September of 2012, this research was conducted on the contrast, spatial resolution, and images of patients. We studied the contrast with IEC body phantom and Jaszczak phantom, while the spatial resolution was evaluated with NEMA triple line phantom. Further, a comparative study was carried out on the quality of the images, on the difference between the images before and after the CT attenuation correction. Results: Compared the differences between the contrast before and after the CT attenuation correction in IEC body phantom. The contrast was improved by 33.6% at minimum, 89.8% at maximum. In case of Jaszczak Phantom, the contrast was enhanced by 9.9% at minimum, 27.8% at maximum. In NEMA Triple line phantom, the resolution was raised by 4.5% in average: 4.4% in horizontal, 4.5% in vertical. In Anthropomorphic Torso Phantom, the perfusion score of the interior wall with the most severe attenuation was measured to be 29.4%. In the experiment carried out on myocardial perfusion SPECT/CT patients, 9% improvement was discovered in the interior wall, where the most dramatic attenuation occurred, after the CT attenuation correction. Conclusion: SPECT/CT proved its clinical usefulness by enabling the acquisition of images with enhanced contrast and spatial resolution compare to the ones resulted from SPECT.

  • PDF

The Research on the Development Potential of Smart Public Facilities in Public Design - Focusing on examples of public facilities in smart cities - (공공디자인에서 스마트 공공시설물의 발전 가능성에 관한 연구 -스마트 도시의 공공시설물 사례를 중심으로-)

  • Son, Dong Joo
    • Journal of Service Research and Studies
    • /
    • v.13 no.4
    • /
    • pp.97-112
    • /
    • 2023
  • Background: In modern society, the importance of Public Design has become increasingly significant in contributing to the enhancement of urban functionality and the quality of life of citizens. Smart Public Facilities have played a pivotal role in enriching user experience by improving accessibility, convenience, and safety, and in elevating the value of the city. This research recognizes the importance of Public Facilities and explores the potential of Smart Public Facilities in solving urban challenges and progressing towards sustainable and Inclusive cities. Method: The literature review comprehensively examines existing theories and research results on Smart Public Facilities. The case study analyzes actual examples of Smart Public Facilities implemented in cities both domestically and internationally, drawing out effects, user satisfaction, and areas for improvement. Through analysis and discussion, the results of the case studies are evaluated, discussing the potential development of Smart Public Facilities. Results: Smart Public Facilities have been found to bring positive changes in various aspects such as urban management, energy efficiency, safety, and information accessibility. In terms of urban management, they play a crucial role in optimization, social Inclusiveness, environmental protection, fostering citizen participation, and promoting technological innovation. These changes create a new form of urban space, combining physical space and digital technology, enhancing the quality of life in the city. Conclusion: This research explores the implications, current status, and functions of Smart Public Facilities in service and design aspects, and their impact on the urban environment and the lives of citizens. In conclusion, Smart Public Facilities have brought about positive changes in the optimization of urban management, enhancement of energy efficiency, increased information accessibility, User-Centric design, increased interaction, and social Inclusiveness. Technological innovation and the integration of Public Facilities have made cities more efficient and proactive, enabling data-based decision-making and optimized service delivery. Such developments enable the creation of new urban environments through the combination of physical space and digital technology. The advancement of Smart Public Facilities indicates the direction of urban development, where future cities can become more intelligent, proactive, and User-Centric. Therefore, they will play a central role in Public Design and greatly contribute to improving the urban environment and the quality of life of citizens.

New Tool to Simulate Microbial Contamination of on-Farm Produce: Agent-Based Modeling and Simulation (재배단계 농산물의 안전성 모의실험을 위한 개체기반 프로그램 개발)

  • Han, Sanghyun;Lee, Ki-Hoon;Yang, Seong-Gyu;Kim, Hwang-Yong;Kim, Hyun-Ju;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This study was conducted to develop an agent-based computing platform enabling simulation of on-farm produce contamination by enteric foodborne pathogens, which is herein called PPMCS (Preharvest Produce Microbial Contamination Simulator). Also, fecal contamination of preharvest produce was simulated using PPMCS. Although Agent-based Modeling and Simulation, the tool applied in this study, is rather popular in where socio-economical human behaviors or ecological fate of animals in their niche are to be predicted, the incidence of on-farm produce contamination which are thought to be sporadic has never been simulated using this tool. The agents in PPMCS including crop, animal as a source of fecal contamination, and fly as a vector spreading the fecal contamination are given their intrinsic behaviors that are set to be executed at certain probability. Once all these agents are on-set following the intrinsic behavioral rules, consequences as the sum of all the behaviors in the system can be monitored real-time. When fecal contamination of preharvest produce was simulated in PPMCS as numbers of animals, flies, and initially contaminated plants change, the number of animals intruding cropping area affected most on the number of contaminated plants at harvest. For further application, the behaviors and variables of the agents are adjustable depending on user's own scenario of interest. This feature allows PPMCS to be utilized in where different simulating conditions are tested.