• Title/Summary/Keyword: emulsifying activity

Search Result 111, Processing Time 0.028 seconds

The Effect of Protein Extraction pH on the Functional Properteis of Seasame Protein Concentrates (단백질 추출 pH가 참깨 농축단백질의 기능적 특성에 미치는 영향)

  • 박정륭;김은정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.4
    • /
    • pp.619-624
    • /
    • 1995
  • Sesame protein concentrate(SPC) was prepared from defatted sesame flour(DSF) at several different pH(2.0, 7.0, 9.0, 11.0) for protein extraction. Some of their functional properties were determined in order to compare the effects of pH during preparation of concentrates. Compared with DSF, nitrogen solubility was markedly improved in all SPC, and SPC extracted at pH 11.0 showed the highest solubility at all pH leaves examined. Fatabsorption was increased in all SPC prepared, but water absorption was decreased as the extraction pH of protein increased. The emulsifying properteis and foaming properties of SPC were remarkably higher than DSF. As the extraction pH of protein was increased, the emulsion activity was also increased, but emulsion stability was decreased. SPC extracted at pH 7.0 showed the highest foaming capacity on the other hand, the highest foaming stability was shown in SPC extracted at pH 2.0. As the protein extraction pH increased, the viscosity of the protein solution was increased. SPC extracted at pH 11.0 showed highest viscosity at all protein concentrations tested.

  • PDF

Food Functionality and Biological Activity of Processed Waters Produced during the Preparation of Fish Roe Concentrates by Cook-dried Process (Fish Roe Concentrates의 제조과정 중에 발생하는 Processed Waters의 식품기능성과 생리활성)

  • Yoon, In Seong;Lee, Gyoon-Woo;Kang, Sang In;Park, Sun Young;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.5
    • /
    • pp.506-519
    • /
    • 2017
  • This study evaluated the protein recovery and functional properties and biological activity of boiled and steamed process water (BPW and SPW, respectively) generated from the preparation of concentrated roe of bastard halibut (BH; Paralichthys olivaceus), skipjack tuna (ST; Katsuwonus pelamis), and yellowfin tuna (YT; Thunnus albacares) using the cook-dry process. The protein loss from the water extracts (EXT) of 100 g of roe protein was 15.05-19.71% and was significantly (P<0.05) higher than that of BPW (5.47-10.34%) and SPW (3.88-8.18%). The foam capacity of BPW (166-203%) and SPW (15-194%) was better than that of EXT. The emulsifying activity index of the original samples was lower than those ($15.40-107.86m^2/g$) of diluted protein samples. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and the reducing power of BPW and SPW were stronger than those of EXT. The 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid ($ABTS^+$) radical scavenging activity of EXT (0.028-0.045mg/mL) was significantly higher those of BPW and SPW. The angiotensin I-converting enzyme (ACE) inhibitory activity of SPW was the highest for BH (1.04 mg/mL), followed by YT and ST. The predominant amino acids in SPW were Glu, Ala, Leu, and His. These results demonstrate that processing water containing diluted organic components, including protein, can be consumed directly by humans as a functional reinforcing material after appropriate concentration processes.

Interfacial Phenomena of Dodecyl Ether Sulfates Containing Various Ethylene Oxide(EO) and Isopropylene Oxide(PO) (EO, PO가 부가된 도데실 에테르 황산화물의 계면성)

  • Yoo, Young-Chang;Kim, Sang-Chun;Kim, Tae-Young;Ju, Myung-Jong;Nam, Ki-Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.2
    • /
    • pp.299-307
    • /
    • 1996
  • The surface tension of PO added sodium poly(oxyethylene(EO), oxyisopropylene(PO)) dodecyl ether sulfate firstly were slightly lower than EO added sulfate in the concentration range of $10^{-6}{\sim}10^{-3}mol/{\ell}$. And they had lower critical micelle concentration ($10^{-4}{\sim}9{\times}10^{-5}mol/{\ell}$) than general anionic surfactants. The adsorptivity ($2.2{\times}10^{-10}mol/cm^2$) of sodium $(PO)_{10}(EO)_5$ dodecyl ether(compound of PO addition firstly) calculated by Gibbs' adsorption isotherm were higher than that of sodium $(EO)_{10}(PO)_5$, dodecyl ether(compound of EO addition firstly), but were lower than that of sodium dodecyl sulfate (${\Gamma}=3.2{\times}10^{-10}mol/cm^2$). These could be understood that the adsorption areas of compounds were very large because of their high molecular weight. Moreover, PO compounds showed better properties than EO compounds in foamability, emulsifying power for organics (n-hexane, benzene), detergency for the lard, tallow oil mixture and dispersability for iron oxide. It was interpreted in terms of surface properties of the PO compounds. These showed that the interfacial activity become higher when hydrophilic and hydrophobic portion existed in aggoromerated state respectively. The test results of emulsifying power for organics (n-hexane, benzene) showed better for benzene than n-hexane. Eight kinds of sodium (EO, PO) dodecyl ether derivatives showed irregular dispersibilities for polar iron oxide in water dispersed media.

  • PDF

Modification of Functional Properties of Soy Protein Isolate by Proteolytic Enzymes (단백분해효소에 의한 대두단백의 기능적 특성변화)

  • Cha, Myeong-Hwa;Yoon, Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.39-45
    • /
    • 1993
  • The effects of enzymatic modification with pepsin and actinidin was studied on molecular weight distributions and functional properties of hydrolysates from soy protein isolate (SPI) differing in degree of hydrolysis. The hydrolyzed SPI by pepsin showed 41.5% degree of hydrolysis after 5 min, and maximum hydrolysis was obtained after 2 hours. Actinidin hydrolyzed SPI 26.71% degree after 1 hour. On SDS-PAGE, native SPI showed 9 distinguishable bands on SDS-PAGE gel. Pepsin treated SPI showed one broad band in the lower part of gel. This band was shifted further to the bottom of the gel and became faint as hydrolysis time increased. While actinidin treated SPI showed different SDS-PAGE pattern from pepsin. However PAGE patterns were similar with pepsin and actinidin treated groups. With pepsin treatment, solubility of SPI distinctively increased around isoelectric point(pI). Emulsifying activity (EA) and emulsifying stability (ES) showed marked increase over pH range of $3.0{\sim}8.0$. 5 min modified group had most excellent foam expansion (FE). Foam stability (FS) was increased as pepsin treatment time increased at pI. With actinidin treatment, solubility was increased. 60 min modified SPI had the most effective EA at pH 4.5. However ES was not effected by actinidin treatment. 5 min modified group was most effect in FE. FS was higher at alkaline pH.

  • PDF

Studies on the Functional Properties of Sesame and Perilla Protein Isolate (참깨와 들깨 단백질의 기능성에 관한 연구)

  • Park, Hyun-Sook;Ahn, Bin;Yang, Cha-Bum
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.350-356
    • /
    • 1990
  • Functional properties such as nitrogen solubility, emulsifying property, foaming property, and water and oil absorption of sesame and perilla protein isolates were determined at pH range of 2-10 and ionic strength of 0-0.5M NaCl. Nitrogen solubility of protein isolates in distilled water showed minimum value at pH6.0 in sesame and at pH 4.0 in perilla and soybean protein isolates, and significantly increased above pH 8.0 in all samples. Addition of 0.1M NaCl solution increased nitrogen solubility, however, decreased in 0.5M NaCl solution. Emulsion activities of all the protein isolates showed minimum value at pH 4.0 and increased in 0.1M NaCl solutions while it was reduced in 0.5M NaCl solutions. The perilla protein isolate showed higher emulsion activity than that of soybean and sesame protein isolates at above pH 6.0. Foaming capacities of sesame and perilla protein isolates were lower than soybean protein isolate and generally all of the samples showed higher profiles in NaCl solutions. The foaming stability of soybean isolate decreased abruptly in 10min, while it was slowly decreased for sesame and perilla isolates during initial 30 min. Oil absorption capacity of perilla protein isolate was higher than that of sesame and soybean protein isolates. Water absorption capacity was similar among the three samples studied.

  • PDF

Self Assembly and Formation of Bi-continuous Cubic Liquid Crystalline Phase (바이컨티니어스 큐빅상 액정의 생성과 자기조직화)

  • Kim, In-Young;Choi, Hwa-Sook;Lee, So-Ra;Choi, Seong-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.478-485
    • /
    • 2014
  • This study is to form the self assembly of cubic crystalline phase to penetrate into the skin epidermis. The various performance synthesized diglyceryl phytylacetate (DGPA) having hydroxyl group (-OH) and 4 methyl chains with phytyl group was carried out as an amphoteric lipid such as emulsifying power, self assembly. Emulsifying activity of DGPA was very stabilized on only 1% of small content, it could make a W/O emulsion containing high internal phase incorporated with water. Cubic liquid crystal structure with DGPA on three-phase diagram was formed, when mixed DGPA, dimethicone (2CS), and water. Through three-phase diagram forming the cubic liquid crystal area, hexagonal structure zone, and mixing water phase and hexagonal structure area, reversed micelle area were respectively certified. Its structure was proved by the SAXS (small angled x-ray scattering) analysis. As an application, formation of cubosome containing 10% of magnesium ascorbylphosphate and 5% of pyridoxine tris-hexyldecanoate was encapsulated. Occlusive effect of cubosome had above 1.7 times better than reversed micelle. From using poloxamer of dispersing agent, phase structure recovered from W/O emulsion to cubic liquid crystal phase when storage in $33^{\circ}C$ incubator. Therefore, our this study is expected to be as epidermal-dermal skin absorbers in skin care cosmetics and pharmaceuticals industries as raw materials to form a cubic crystal phase through a more in-depth research to DGPA having amphoteric lipid property.

Triple Matrix Capsulation having Visible Effects and Stabilizing Functions

  • Kim, In-Young;Seong, Bo-Reum;Lee, Min-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.326-329
    • /
    • 2015
  • This study is to develop the double capsulation technology in order to increase the conservativeness and stability of unstable materials such as vitamins, polyphenols, natural active ingredients. And also, best way of triple matrix capsulation using natural polymers were detail described. As the first capsulation with w/o/w (water-in-oil-in-water) emulsifying system, our study group was especially made to soft and moisture cream using 5wt% of sucrose ester emulsifier as first capsulation. Nutrient agents are squalane, camellia oil. Triple matrix capsulation was formed with the best stabilized bead type capsules when it blended of chitosan, algin, sodium-potassium alginate. The bead diameter size was about 2.0~4.5mm (mean diameter: 3.2mm). Activity of lactobacillus containing cream for depending on various pH variations showed that alkalinity ($pH=10.8{\pm}0.5$) condition was higher than acidity ($pH=4.2{\pm}0.2$) and neutrality ($pH=7.1{\pm}0.3$) conditions. After a month, it also was certified to the activity of lactobacillus in incubated at $37{\pm}1^{\circ}C$ in culture medium. As application of food industry, we developed the containing lactobacillus capsule and 7 colored kinds of double and triple matrix capsulation in yogurt cream and active ingredients. As for above mentioned those results, one of tool to stabilize the living lactobacillus, doubled matrix capsulation greatly be expected to contribute to food industry. Furthermore, it can be expected to apply the drug delivery system (DDS) to active ingredients of stabilizing technologies at drug, pharmaceutical division and cosmetic industry, etc.

Isolation and Characterization of a Crude oil-Degrading Strain, Nocardia sp. H 17-1 (원유 분해균주 Nocardis sp. Hl7-1의 분리 및 특성)

  • 이창호;권기석
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.654-662
    • /
    • 1996
  • Bacterial strains which degrade crude oil were isolated by liquid culture from oil-spilled soil, and four isolates were selected among them. The strain Hl7-1 was finally selected after testing emulsifying activity and oil conversion rate. The strain Hl7-1 was identified as a Nocardia sp. based on the test for morphological, biochemical and physiological characteristics. It appears to be highly specialized for growth on crude oil in minimal salts medium since it showed preference for oil or degradation products as substrates for growth. It was found that it could grow on at least fifteen different hydrocarbons. The optimum cultural and environmental conditions were seeked. Cell growth and emulsification activity as a function of time were also determined. Crude oil degradation and the reduction of product peak was identified by the analysis of remnant oil by gas chromatography after 3 days of cultivation. Approximately 83% of oil were converted into a form no longer extractable by organic solvents.

  • PDF

Functionality and Biological Activity of Isolate Processed Water Generated During Protein Isolate Preparation of Fish Roes Using an Isoelectric Solubilization and Precipitation Process (등전점 용해/침전 공정으로 어류 알 분리단백질의 제조과정에서 발생하는 가공처리수에 대한 식품기능성 및 생리활성)

  • Lee, Gyoon-Woo;Yoon, In Seong;Kang, Sang In;Lee, Su Gwang;Kim, Jae-Il;Kim, Jin-Soo;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.6
    • /
    • pp.694-706
    • /
    • 2017
  • This study evaluated the protein recovery, functional properties and biological activity of isolate processed water (IPW) generated in the preparation of protein isolates from fish roes (BH, bastard halibut Paralichthys olivaceus; ST, skipjack tuna Katsuwonus pelamis; YT, yellowfin tuna Thunnus albacares) by an isoelectric solubilization and precipitation process. The IPWs contained 2.7-5.4 mg/mL of protein, and the protein losses were 8-21% (P<0.05). The form capacity of IPW-3 for BH and ST, and IPW-4 for YT was 155, 194, and 164%, respectively. The emulsifying activity index ($27-43m^2/g$) of the YT-IPWs was the strongest, followed by ST ($7-29m^2/g$) and BH ($10-19m^2/g$). The 2,2-diphenyl-1-picrylhydrazyl scavenging activities of IPW-1 and -3 were higher than those of IPW-2 and -4. The 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid scavenging activity ($IC_{50}$, mg/mL) of IPW-2 and -4 was 0.03 mg/mL for BH, 0.04-0.08 mg/mL for ST, and 0.04-0.07 mg/mL for YT. BH IPW-3 had the strongest reducing power (0.41 mg/mL) and superoxide dismutase-like activity (1.68 mg/mL). The angiotensin-I converting enzyme inhibitory activity of IPW-3 was the highest for ST (1.52 mg/mL), followed by BH and YT. The common predominant amino acids in the IPWs were the essential amino acids Val, Leu, Lys, and Arg and the non-essential amino acids Ser, Glu, and Ala.

Isolation and Characterization of Biosurfactant from Bacillus atrophaeus DYL,-130 (Bacillus atrophaeus DYL-130이 생산하는 biosurfactant의 분리 및 특성)

  • Kim Sun-Hee;Lee Sang-Cheol;Park In-Hye;Yoo Ju-Soon;Joo Woo-Hong;Hwang Cher-Won;Choi Young-Lark
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.679-684
    • /
    • 2005
  • The objective of this study was investigate the characteristic of biosurfactant produced from the iso-lated strain. The strain was isolated from soli samples of Duck-Yu Mountain and it was identified as Bacillus atrophaeus DYL-130 by 16S rDNA and gyrA gene nucleotide sequence analysis. The surface ten-sion of culture filtrate of Bacillus atrophaeus DYL-130 decreased to 28 mN/m and its biosurfactant con-centration was determined by diluting the culture filtrate until the critical micelle concentration (CMC). The emulsifying activity and stability of crude biosurfactant was measured by using water-immiscible hydrocarbons and oils as substrate. The biosurfactant was purified by affinity chromatography and the surface activity of purified biosurfactant was measured by drop-collapsing method and it could be effectively emulsify toluene.