Purpose: This paper considers the issue of corporate tax avoidance (CTA) in the distribution of the tax burden across companies in Vietnam because the high level of CTA leads to unfairness in taxation. In particular, we aim for discussing the way to measure the extent of CTA and explore the determinants of CTA that reflect the features of high-tax risk-taking companies. Research design, data and methodology: The study investigates factors influencing the CTA behavior of legal entities listed on the Vietnam stock market between 2012 and 2018 to fill the empirical research vacuum in the country. we employ the dynamic GMM estimate method. Interestingly, CTA is considered through three approaches, including two effective-tax-rate-based methods and especially accrual earnings Results: The results highlight tax - accounting book disparities have significant effects on CTA. In addition, firm size, net asset value, debt leverage, and tax-accounting books are related to CTA. Conclusions: Tax avoidance is shown to have a positive correlation with financial distress in this case. The higher a company's capital adequacy ratio, the fewer tax avoidance opportunities it has. The paper draws some recommendations to deal with tax avoidance that improves the fairness in the distribution of the tax burden among corporations.
Journal of the Korean Society for Precision Engineering
/
v.14
no.11
/
pp.171-179
/
1997
This paper describes a nesting system of a computer-aided design of blanking and piercing for irregularly shaped sheet metal products. An approach to the system is based on knowledge-based rules. A nesting system is designed by considering several factors, such as utilization ratio which minimises the scrab for single or pairwise operation, bridge width, grain orientation and design requirements which maximise the strength of the part when subsequent bending is involve. Therefore this system which was implemented blank layout and strip layout module can carry out a nesting with a best utilization and a process planning for irregular shaped sheet metal products in single or pairwise operation and generate the blank layout and strip layout in graphic forms. Knowledges for a nesting and a process planning are extracted from plasticity theories, relevant references and empirical know-hows of experts in blanking industries. This provides its efficiency and effectiveness for nesting irregularly shaped sheet metal products.
HAQUE, Abdul;RAO, Marriam;QAMAR, Muhammad Ali Jibran
The Journal of Asian Finance, Economics and Business
/
v.9
no.3
/
pp.203-215
/
2022
Bayesian Networks are multivariate probabilistic factor graphs that are used to assess underlying factor relationships. From January 2005 to December 2018, the study examines how Dynamic Bayesian Networks can be utilized to estimate portfolio risk and return as well as determine inter-factor relationships among reversal profit-generating components in Pakistan's emerging market (PSX). The goal of this article is to uncover the factors that cause reversal profits in the Pakistani stock market. In visual form, Bayesian networks can generate causal and inferential probabilistic relationships. Investors might update their stock return values in the network simultaneously with fresh market information, resulting in a dynamic shift in portfolio risk distribution across the networks. The findings show that investments in low net profit margin, low investment, and high volatility-based designed portfolios yield the biggest dynamical reversal profits. The main triggering aspects related to generation reversal profits in the Pakistan market, in the long run, are net profit margin, market risk premium, investment, size, and volatility factor. Investors should invest in and build portfolios with small companies that have a low price-to-earnings ratio, small earnings per share, and minimal volatility, according to the most likely explanation.
The effect of cladding panel size on the size reduction factor (SRF) of extreme area-averaging wind pressure (EAWP) on the facades of a high-rise building is often ignored in previous studies. Based on wind tunnel tests, this study investigated the horizontal and vertical correlations of wind pressure on the facade claddings of square-section high-rise buildings. Then, the influencing parameters on the SRF of the EAWP on the cladding panels were analyzed, which were the panel area, panel width, panel length and building width. The results show clear regional distinctions in the correlation of wind pressures on the building facades and the rules of the horizontal and vertical correlations are remarkably different, which causes the cladding size ratio to impact the SRF significantly. Therefore, this study suggests the use of the non-dimensional comprehensive size parameter b𝜶h1-𝜶/B (𝜶 is the fitting parameter) determined by the cladding panel horizontal size b, cladding panel vertical size h and the building width B rather than the cladding panel area to describe the variation of the EAWP. Finally, some empirical formula for the SRF of the EAWP on the cladding of a high-rise building is proposed with the nondimensional comprehensive size parameter.
Quasar luminosity function (QLF) shows the active galactic nucleus (AGN) demography as a result of the combination of the growth and the evolution of black holes, galaxies, and dark matter halos along the cosmic time. The recent wide and deep surveys have improved the census of high-redshift quasars, making it possible to construct reliable ultraviolet (UV) QLFs at 2 < z < 6 down to M1450 = -23 mag. By parameterizing these up-to-date observed UV QLFs that are the most extensive in both luminosity and survey area coverage at a given redshift, we show that the UV QLF has a universal shape, and their evolution can be approximated by a pure density evolution (PDE). In order to explain the observed QLF, we construct a model QLF employing the halo mass function, a number of empirical scaling relations, and the Eddington ratio distribution. We also include the outshining of AGN over its host galaxy, which made it possible to reproduce a moderately flat shape of the faint end of the observed QLF (slope of ~ -1.1). This model successfully explains the observed PDE behavior of UV QLF at z > 2, meaning that the QLF evolution at high redshift can be understood under the framework of halo mass function evolution. The importance of the outshining effect in our model also implies that there could be a hidden population of faint AGNs (M1450 > -24 mag), which are buried under their host galaxy light.
The purpose of this paper is to show the empirical analysis way for measuring the seaport efficiency by using the previous radial model and the newly modified non-radial models( panel additive model, panel RAM model, and panel SBM model)with Spearman rank order correlation coefficient(SROCC) for 20 Korean ports during 11 years(1997-2007) for 1 inputs(port investment amount) and 4 outputs(Number of Ship Calls, Port Revenue, Customer Satisfaction Score for Port Service and Container Cargo Throughput). The main empirical results of this paper are as follows. First, consistency ratio of SROCC in terms of efficiency scores between radial and panel Additive model was over about 76% and overall consistency ratio was about 71.6%. Second, an efficiency of panel RAM model was higher than that of radial model with similarity. However, panel SBM model shows the very similar efficiency scores with panel radial model. Third, the slack size of radial model is smaller compared to non-radial model. Models' ranking orders in terms of efficiency scores, number of efficient ports are panel RAM model, panel SBM model, and radial model. The order from the minimum efficiency scores was the same order like just before. The policy implication to the Korean seaports and planner is that Korean seaports should introduce the new methods like non-radial models(panel additive model, panel RAM model, and panel SBM model) for measuring the port performance.
The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.
This study empirically examines the impact of SSM market entry on changes in market shares among retailing types. The data is monthly time-series data spanning over the period from January 2000 to December 2010, and the effect of SSM market entry on market shares of retailing types is analyzed by utilizing several key factors such as the number of new SSM monthly entrants, total number of SSMs, the proportion of new SSM entrant that is smaller than $165m^2$ to total new SSM entrants. According to the Korean Standard Industrial Classification codes, the retailing type is classified into 5 groups: department stores, retail sale in other non-specialized large stores(big marts), supermarkets, convenience stores, and retail sale in other non-specialized stores with food or beverages predominating (others). The market shares of retailing types are calculated by the ratio of each retailing type monthly sales to total monthly retailing sales in which total retailing sales is the sum of each retailing type sales. The empirical model controls for the size effects with the number of monthly employees for each retailing type and the macroeconomic effects with M2. The empirical model employed in this study is as follows; $$MS_i=f(NewSSM,\;CumSSM,\;employ_i,\;under165,\;M2)$$ where $MS_i$ is the market share of each retailing type (department stores, big marts), supermarkets, convenience stores, and others), NewSSM is the number of new SSM monthly entrants, CumSSM is total number of SSMs, $employ_i$ is the number of monthly employees for each retailing type, and under165 is the proportion of new SSM entrant that is smaller than $165m^2$ to total new SSM entrants. The correlation among these variables are reported in
.
shows the descriptive statistics of the sample. Sales is the total monthly revenue of each retailing type, employees is total number of monthly employees for each retailing type, area is total floor space of each retail type($m^2$), number of store is total number of monthly stores for each retailing type, market share is the ratio of each retailing type monthly sales to total monthly retailing sales in which total retailing sales is the sum of each retailing type sales, new monthly SSMs is total number of new monthly SSM entrants, and M2 is a money supply. The empirical results of the effect of new SSM market entry on changes in market shares among retailing types (department stores, retail sale in other non-specialized large stores, supermarkets, convenience stores, and retail sale in other non-specialized stores with food or beverages predominating) are reported in
. The dependant variables are the market share of department stores, the market share of big marts, the market share of supermarkets, the market share of convenience stores, and the market share of others. The result shows that the impact of new SSM market entry on changes in market share of retail sale in other non-specialized large stores (big marts) is statistically significant. Total number of monthly SSM stores has a significant effect on market share, but the magnitude and sign of effect is different among retailing types. The increase in the number of SSM stores has a negative effect on the market share of retail sale in other non-specialized large stores(big marts) and convenience stores, but has a positive impact on the market share of department stores, supermarkets, and retail sale in other non-specialized stores with food or beverages predominating (others). This study offers the theoretical and practical implication to these findings and also suggests the direction for the further analysis.
Since 2008, China's shipping industry has been in a slump, with shipbuilding orders falling sharply, and high-growth excess capacity has become increasingly apparent, leaving many firms with sharply reduced orders at risk of bankruptcy and shutdown. To ensure the development of the shipbuilding industry and enhance the international competitiveness of the shipbuilding industry, it is necessary to analyze the present situation of the shipbuilding industry and the financial situation of the shipbuilding enterprises. And analyzing the problems faced by enterprises from the perspective of capital structure is very meaningful to the shipbuilders with high capital operation. We are trying to analyze the determinants of capital structure of China's shipbuilding listed companies. 30 listed Chinese shipbuilding and listed companies have been designated as sample companies that can obtain financial statements for 13 consecutive years. They also divided 30 sample companies into shipbuilding, shipbuilding-related manufacturing, and shipbuilding-related transportation. Dependent variable is the debt level of the year, independent variable includes the debt level of the previous year, fixed asset ratio, profitability ratio, depreciation cost ratio and asset size. The regression model of the panel used to analyze determinants is capital structure. The results of the empirical analysis are as follows. First, a fixed-effect model for the entire entity showed that the debt-to-equity ratio and the size of the asset in the previous period had a positive effect on the debt-to-equity ratio in the current period. Second, the impact of the profitability ratio on the debt level in the prior term also supports the capital procurement ranking theory rather than the static counter-conflict theory. Third, it was shown that the ratio of the depreciation of the prior term, which replaces the non-liability tax effect, affects the debt-to-equity ratio in the current period.
To enhance the competitive advantage in a constantly changing business environment, an enterprise management must make the right decision in many business activities based on both internal and external information. Thus, providing accurate information plays a prominent role in management's decision making. Intuitively, historical data can provide a feasible estimate through the forecasting models. Therefore, if the service department can estimate the service quantity for the next period, the service department can then effectively control the inventory of service related resources such as human, parts, and other facilities. In addition, the production department can make load map for improving its product quality. Therefore, obtaining an accurate service forecast most likely appears to be critical to manufacturing companies. Numerous investigations addressing this problem have generally employed statistical methods, such as regression or autoregressive and moving average simulation. However, these methods are only efficient for data with are seasonal or cyclical. If the data are influenced by the special characteristics of product, they are not feasible. In our research, we propose a forecasting framework that predicts service demand of manufacturing organization by combining Case-based reasoning (CBR) and leveraging an unsupervised artificial neural network based clustering analysis (i.e., Self-Organizing Maps; SOM). We believe that this is one of the first attempts at applying unsupervised artificial neural network-based machine-learning techniques in the service forecasting domain. Our proposed approach has several appealing features : (1) We applied CBR and SOM in a new forecasting domain such as service demand forecasting. (2) We proposed our combined approach between CBR and SOM in order to overcome limitations of traditional statistical forecasting methods and We have developed a service forecasting tool based on the proposed approach using an unsupervised artificial neural network and Case-based reasoning. In this research, we conducted an empirical study on a real digital TV manufacturer (i.e., Company A). In addition, we have empirically evaluated the proposed approach and tool using real sales and service related data from digital TV manufacturer. In our empirical experiments, we intend to explore the performance of our proposed service forecasting framework when compared to the performances predicted by other two service forecasting methods; one is traditional CBR based forecasting model and the other is the existing service forecasting model used by Company A. We ran each service forecasting 144 times; each time, input data were randomly sampled for each service forecasting framework. To evaluate accuracy of forecasting results, we used Mean Absolute Percentage Error (MAPE) as primary performance measure in our experiments. We conducted one-way ANOVA test with the 144 measurements of MAPE for three different service forecasting approaches. For example, the F-ratio of MAPE for three different service forecasting approaches is 67.25 and the p-value is 0.000. This means that the difference between the MAPE of the three different service forecasting approaches is significant at the level of 0.000. Since there is a significant difference among the different service forecasting approaches, we conducted Tukey's HSD post hoc test to determine exactly which means of MAPE are significantly different from which other ones. In terms of MAPE, Tukey's HSD post hoc test grouped the three different service forecasting approaches into three different subsets in the following order: our proposed approach > traditional CBR-based service forecasting approach > the existing forecasting approach used by Company A. Consequently, our empirical experiments show that our proposed approach outperformed the traditional CBR based forecasting model and the existing service forecasting model used by Company A. The rest of this paper is organized as follows. Section 2 provides some research background information such as summary of CBR and SOM. Section 3 presents a hybrid service forecasting framework based on Case-based Reasoning and Self-Organizing Maps, while the empirical evaluation results are summarized in Section 4. Conclusion and future research directions are finally discussed in Section 5.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.