• Title/Summary/Keyword: empirical ratio

Search Result 1,137, Processing Time 0.023 seconds

Ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages

  • Lu Deng;Min Zhu;Michael C.H. Yam;Ke Ke;Zhongfa Zhou;Zhonghua Liu
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.589-605
    • /
    • 2023
  • This paper investigates the ductility demands of steel frames equipped with self-centring fuses under near-fault earthquake motions considering multiple yielding stages. The study is commenced by verifying a trilinear self-centring hysteretic model accounting for multiple yielding stages of steel frames equipped with self-centring fuses. Then, the seismic response of single-degree-of-freedom (SDOF) systems following the validated trilinear self-centring hysteretic law is examined by a parametric study using a near-fault earthquake ground motion database composed of 200 earthquake records as input excitations. Based on a statistical investigation of more than fifty-two (52) million inelastic spectral analyses, the effect of the post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio on the mean ductility demand of the system is examined in detail. The analysis results indicate that the increase of post-yield stiffness ratios, energy dissipation coefficient and yielding displacement ratio reduces the ductility demands of the self-centring oscillators responding in multiple yielding stages. A set of empirical expressions for quantifying the ductility demands of trilinear self-centring hysteretic oscillators are developed using nonlinear regression analysis of the analysis result database. The proposed regression model may offer a practical tool for designers to estimate the ductility demand of a low-to-medium rise self-centring steel frame equipped with self-centring fuses progressing in the ultimate stage under near-fault earthquake motions in design and evaluation.

Analysis of the Determinants of Research and Development in the Pharmaceutical Industry Using Panel Study Focused Foreign and Institutional Investors (패널자료를 이용한 제약산업의 연구개발투자 결정요인분석: 외국인투자자와 기관투자가를 중심으로)

  • Lee, Mun-Jae;Choi, Man-Kyu
    • The Korean Journal of Health Service Management
    • /
    • v.9 no.3
    • /
    • pp.247-254
    • /
    • 2015
  • Objectives : The aim of this study was to analyze the influence of foreign and institutional investors in the pharmaceutical industry on R&D investments. Methods : The empirical analysis was done for the years 2009 to 2013 which examined the period after the influence of the financial crisis. Financial statements and comments in general and internal transactions were extracted from the TS-2000 of the Korea Listed Company Association. STATA 12.0 was used as the statistical package for the panel analysis. Results : The results show that the shareholding ratio of foreigner investors turned out to have a statistically significant influence on R&D investment. No statistical significance was found in the shareholding ratio of institutional investors. Conclusions : The findings of this study, which indicate that a higher shareholding ratio of foreigner investors leads to greater R&D investment, indicate that foreign investors directly or indirectly impose pressure on a manager to make R&D investments for the long-term.

An Overview of Remote Sensing of Chlorophyll Fluorescence

  • Xing, Xiao-Gang;Zhao, Dong-Zhi;Liu, Yu-Guang;Yang, Jian-Hong;Xiu, Peng;Wang, Lin
    • Ocean Science Journal
    • /
    • v.42 no.1
    • /
    • pp.49-59
    • /
    • 2007
  • Besides empirical algorithms with the blue-green ratio, the algorithms based on fluorescence are also important and valid methods for retrieving chlorophyll-a concentration in the ocean waters, especially for Case II waters and the sea with algal blooming. This study reviews the history of initial cognitions, investigations and detailed approaches towards chlorophyll fluorescence, and then introduces the biological mechanism of fluorescence remote sensing and main spectral characteristics such as the positive correlation between fluorescence and chlorophyll concentration, the red shift phenomena. Meanwhile, there exist many influence factors that increase complexity of fluorescence remote sensing, such as fluorescence quantum yield, physiological status of various algae, substances with related optical property in the ocean, atmospheric absorption etc. Based on these cognitions, scientists have found two ways to calculate the amount of fluorescence detected by ocean color sensors: fluorescence line height and reflectance ratio. These two ways are currently the foundation for retrieval of chlorophyll-a concentration in the ocean. As the in-situ measurements and synchronous satellite data are continuously being accumulated, the fluorescence remote sensing of chlorophyll-a concentration in Case II waters should be recognized more thoroughly and new algorithms could be expected.

Effect of strain ratio variation on equivalent stress block parameters for normal weight high strength concrete

  • Kumar, Prabhat
    • Computers and Concrete
    • /
    • v.3 no.1
    • /
    • pp.17-28
    • /
    • 2006
  • Replacement of actual stress distribution in a reinforced concrete (RC) flexural member with a simpler geometrical shape, which maintains magnitude and location of the resultant compressive force, is an acceptable conceptual trick. This concept was originally perfected for normal strength concrete. In recent years, high strength concrete (HSC) has been introduced and widely used in modern construction. The stress block parameters require updating to account for special features of HSC in the design of flexural members. In future, more varieties of concrete may be developed and a corresponding design procedure of RC flexural members will be required. The usual practice is to conduct large number of experiments on various sizes of specimen and then evolve an empirical relation. This paper presents a numerical procedure through which the stress block parameters can be numerically derived for a given strain ratio variation. The material model for concrete is presented and computational procedure is described. This procedure is illustrated with several variations of strain ratio. The advantages of numerical procedure are that it costs less and it can be used with new material models for any new variety of concrete.

Fatigue Crack Propagation Behaviors under the Controlloed Stress Amplitude (하중진폭제어에 따르는 피로균열전파거동)

  • Kim, Sang-Chul;Ham, Kyoung-Chun;Kang, Dong-Myeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.3
    • /
    • pp.140-148
    • /
    • 1992
  • The effect of mechanical, properties in the plastic zone near the crack-tip was investigated, under various controlled loading conditions, i.e., ${\Delta}K$ increasing, ${\Delta}K$ decreasing, and single overload test. For both ${\Delta}K$ decreasing test and ${\Delta}K$ increasing test with constant stress ratio, it is found that the ratio of material constant m'( ${\Delta}K$ decreasing test) to material constant m( ${\Delta}K$ increasing test) is larger than 1 for n<0.1, and it is equal to 1 for 0.10.2. A modified crack growth rate equation based on Forman's equation which applied stable region of fatigue crack propagation in ${\Delta}K$ decreasing test is proposed. Within the limit of this single overload test, an empirical relation between among the retardation ratio (Nd/ $N^{*}$), the strain hardening exponent (n) and the percent peak load (%PL) has been established.established.

  • PDF

Flow Visualization Study on the Turbulent Mixing of Two Fluid Streams(II) (분지관 혼합기의 난류혼합에 대한 유동가시화 연구 (II))

  • Kim, Gyeong-Cheon;Sin, Dae-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.7
    • /
    • pp.1013-1021
    • /
    • 1998
  • Various vortical structures are investigated by using three kinds of flow visualization methods in branch pipe flows. There are two typical flow patterns when a jet from the branch pipe with various angles is injected to the main pipe cross flow. The velocity range of cross flow of the main pipe is 0.2 m/s ~ 1.2 m/s and the corresponding Reynolds number, R$_{p}$ is of the range 1.5 * 10$^{3}$ ~ 9.02 * 10$^{3}$. The velocity ratio(R), jet velocity/cross flow velocity, is chosen from 1.3 to 4. The subsequent behavior and development of the ring vortices which are created at the jet boundary mainly depend on the velocity ratio. An empirical relation for the shedding frequency of the ring vortices is derived. It is also found that there are two different vortex shedding mechanism in the mixing of two fluid streams.s.

Measurement Method of Complex Dynamic Viscoelastic Material Properties (점탄성 재료의 복소수 동특성 측정방법)

  • Lee, In-Won;An, Nam-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.489-495
    • /
    • 2009
  • A novel technique to measuret of viscoelastic properties of polymers is proposed to investigate complex Poisson's ratio as a function of frequency. The forced vibration responses for the samples under the normal and the shear deformation are to be measured with varying load masses. The measured data were used to obtain the viscoelastic properties of the material based on an accurate 2D numerical deformation model of the sample. The 2D model enabled us to exclude data correction by the empirical form factor used in 1D model. Comprehensive measurements of viscoelastic properties of two slightly varied silicone RTV rubber ($Silastic^{(R)}$ S2) compositions were performed. Standard composition (90% PDMS polymer + 10% catalyst) and modified composition (92.5% polymer + 7.5% catalyst) were tested in temperature range from $30^{\circ}C$ to $70^{\circ}C$. Shear modulus, modulus of elasticity, loss factor, and both the real and the imaginary parts of the Poisson's ratio were determined for frequencies from 50 to 400Hz in the linear deformation regime (at relative deformations $10^{-4}{\sim}10^{-3}$).

Influence of Mixing Conditions on the Strength of Solidified Sandy Soils with Cement (배합조건이 시멘트혼합 사질토의 강도에 미치는 영향)

  • Yoo, Chan;Chang, Pyung-Wuck
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.135-142
    • /
    • 2001
  • Laboratory experiment was performed to evaluate the influence of mixing conditions to the strength of solidified sandy soils with cement. The major physical factors considered in this experiment were the fine particles content(<$\sharp200%$), cement content(%) and water-cement ratio, and unconfined compressive strength test was performed on the samples at 7 and 28 cured day. The results of tests shows that when the cement content is relatively low (7~10 percents) the fine content in the sandy soils is very important, but when cement content is high the water-cement ratio became more important. It was appeared that in the range of the cement content of 7~10 percents, about 20~30 percents of fine content to the total sample weight is the optimum condition to get the maximum strength. In the case of the cement content of 13 percents, the strength of sample was considerably affected by the water-cement ratio rather than the fine content. In this paper, empirical equations were also developed and evaluated to verify the relationship among three factors by the multi-regression analysis.

  • PDF

A Study on High Cycle Temperature Fluctuation Caused by Thermal Striping in a Mixing Tee Pipe (혼합배관 내의 열 경계층 이동으로 인한 고주기 온도요동에 관한 연구)

  • Kim, Seoug-B.;Park, Jong-H.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.9-19
    • /
    • 2007
  • Fluid temperature fluctuations in a mixing tee pipe were numerically analyzed by LES model in order to clarify internal turbulent flows and to develope an evaluation method for high-cycle thermal fatigue. Hot and cold water with an temperature difference $40^{\circ}C$ were supplied to the mixing tee. Fluid temperature fluctuations in a mixing tee pipe is analysed by using the computational fluid dynamics code, FLUENT, Temperature fluctuations of the fluid and pipe wall measured as the velocity ratio of the flow in the branch pipe to that in the main pipe was varied from 0.05 to 5.0. The power spectrum method was used to evaluate the heat transfer coefficient. The fluid temperature characteristics were dependent on the velocity ratio, rather than the absolute value of the flow velocity. Large fluid temperature fluctuations were occurred near the mixing tee, and the fluctuation temperature frequency was random. The ratios of the measured heat transfer coefficient to that evaluated by Dittus-Boelter's empirical equation were independent of the velocity ratio, The multiplier ratios were about from 4 to 6.

How Have Indian Banks Adjusted Their Capital Ratios to Meet the Regulatory Requirements? An Empirical Analysis

  • NAVAS, Jalaludeen;DHANAVANTHAN, Periyasamy;LAZAR, Daniel
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.11
    • /
    • pp.1113-1122
    • /
    • 2020
  • The purpose of this study is to examine how the Indian banks have adjusted their risk-based capital ratios during 2009-2018 to meet the regulatory requirements. Banks can, in principle, increase their risk-based regulatory capital ratio, either by increasing their levels of regulatory capital or by shrinking their risk-weighted assets by adjusting asset growth or risk in the portfolio. We investigate banks' capital behavior by decomposing the change in the capital ratio into the contribution of its components and analyzing their variance across regulatory regimes and banks' ownerships. We further investigate how each component of the capital ratio is adjusted by the banks by breaking down them into balance sheet items. We find that the banks' capital behavior significantly differed between public and private sector banks and between the two regulatory regimes. During Basel II, banks, in general, followed a strategy of aggressive asset growth with increased risk-taking. The decline in the CRAR because of such an expansionary strategy was adjusted by augmenting additional capital. However, during Basel III, due to higher capital requirements, both in terms of quantity and quality, banks followed a strategy of cutting back their asset growth and reducing the risk in their portfolio to maintain their CRAR.