• Title/Summary/Keyword: empirical modeling

Search Result 978, Processing Time 0.03 seconds

A Study on Dynamic Structural Analysis for Blast Vibration by using Semi-Empirical Method (준 경험적 방법에 의한 발파진동원의 특성과 구조물 동적 해석에 관한 연구)

  • 손성완;김준호;정석영;홍성경;김동용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.271-276
    • /
    • 2001
  • Most engineers, related to soil and civil dynamic field, have been interested in the dynamic response of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures and utilities due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic response analysis have been performed to predict vibration levels of structure due to blasting and the semi-empirical method. which is based on vibration measurement data. has been employed to consider blast vibration characteristics.

  • PDF

Emotional Leadership, Leader Legitimacy, and Work Engagement in Retail Distribution Industry

  • HA, Seonmi;YOUN, SaJean;MOON, Jaeseung
    • Journal of Distribution Science
    • /
    • v.18 no.7
    • /
    • pp.27-36
    • /
    • 2020
  • Purpose: The study examines how emotional leadership affects employee attitude towards work engagement. Leader legitimacy perception is chosen as the mediating variable to understand the effect of emotional leadership on employee work engagement. Research design, data and methodology: The research model is based on theory and empirical research findings in order to examine the mediating effect of leader legitimacy perception on the relationship between the manager's emotional leadership and employee work engagement. For this purpose, a survey was conducted among 188 employees of domestic retail distributors. Confirmatory factor analysis (CFA) and survey data confirmed the construct, and the hypothesis was tested by using structural equation modeling (SEM). Results: a) Emotional leadership has positive influence on leader legitimacy; b) Leader legitimacy is positively related to work engagement; c) Leader legitimacy mediates a positive relationship between emotional leadership and work engagement. However, there is no direct effect on work engagement (of employees) from emotional leadership standpoint. Conclusion: Based on the empirical results, implications and future research directions are discussed.

Impacts of E-Intermediary Use on Export Performance: A Resource Based View Perspective

  • Cho, Hyuk-Soo
    • Journal of Information Technology and Architecture
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • The Internet has motivated firms to participate in electronic commerce. With the development of electronic commerce, SMEs (small- and medium-sized enterprises) may be forced to use e-intermediaries in export marketing. This study aims at assessing e-intermediaries in various aspects. Empirical and theoretical studies are conducted to investigate determinants and effects of eintermediary use in export marketing. Based on resource-based view (RBV), the study develops a conceptual model that can address the question of which international competence and export performance are closely related to e-intermediary use by SMEs. Based on literature review and theoretical foundations, this study made four hypotheses. With AMOS, structural equation modeling (SEM) was used for testing four hypotheses. The empirical findings support all hypotheses. Last, this study suggests examining comprehensive internal and external factors in terms of e-intermediary use as an interesting topic for future research.

An Empirical Analysis of Orientation Relationship of Korean Freight Forwarders with Chinese Forwarders (한국운송주선업체의 중국업체에 대한 관계지향성 인식에 관한 연구)

  • Cho, Sam-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.699-707
    • /
    • 2004
  • The purpose of this paper is to conduct an empirical analysis in order to how cooperative relationships such as joint venture, management cooperation and agency contracts affect the business performance of Korean freight forwarders. In order to fulfill the paper objective, this paper examines the roles of freight forwarders and business environment of Chinese markets.

Modeling for Frost Growth on a Cold Plate (냉각 평판에서 서리 성장 모델링)

  • Yang, Dong-Keun;Lee, Kwan-Soo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1546-1551
    • /
    • 2004
  • This paper presents a mathematical model to predict the frost properties and heal and mass transfer within the frost layer formed on a cold plate. The laminar flow equations for the air-side are analyzed. and the empirical correlations of local frost properties are employed in order to predict the frost layer growth. The correlations of local frost density and effective thermal conductivity of frost layer, obtained from various experimental conditions, are derived as functions of various frosting parameters (Reynolds number, frost surface temperature, absolute humidity and temperature of moist air, cooling plate temperature, and frost density). The numerical results are compared with experimental data and the results of various models to validate the present model, and agree well with experimental data within a maximum error of 10%. The heat and mass transfer coefficients obtained from the numerical analyses are presented, as the results, it is found that the model for frost growth using the correlation of heat transfer coefficient without solving air flow have a limitation in its application.

  • PDF

Reinforced high-strength concrete square columns confined by aramid FRP jackets -part II: modeling

  • Wu, Han-Liang;Wang, Yuan-Feng;Ma, Yi-Shuo
    • Steel and Composite Structures
    • /
    • v.11 no.4
    • /
    • pp.325-340
    • /
    • 2011
  • Based on the experimental data presented in part I of these companion papers, a semi-empirical model is proposed for axial stress-strain curves of reinforced high-strength concrete square columns confined by aramid fiber reinforced polymer (FRP) jackets. Additionally, a three-dimensional finite element model is developed to simulate the mechanical behaviors of the columns. In the finite element model, both material nonlinear and contact nonlinear are taken into account. Moreover, the influence of contact nonlinear (i.e., the end friction on the contact surface between test machines and specimens) is investigated deeply. Predictions from both the semi-empirical model and the finite element model agree with the experimental results, and it is also demonstrated that the friction coefficient of end friction notably affect the properties of columns when it ranges from 0.00 to 0.25.

Development of Cabin Noise Prediction Program Induced by HVAC System (공조시스템 유기 격실 소음 예측 프로그램 개발)

  • Kim, Byung-Hee;Kwon, Jong-Hyun;Cho, Dae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.554-558
    • /
    • 2004
  • In this paper, we introduce noise prediction program of HVAC system to assist low-noisy design of ship's cabin. The developed program calculates sound power levels at HVAC components considering primary and secondary noise generated by fan and duct element, duct element noise attenuation, and duct break-in noise based on the authentic empirical method suggested by NEBB and acoustic power balancing method. Sound pressure level at cabin with or without ceiling system is evaluated by the diffuse-field theory considering diffuser and duct break-out sound powers. Moreover, the program provides intuitive pre- and post-processors using modem GUI functions to help efficient modeling and evaluation of cabin and HVAC component noise. To validate the accuracy and convenience of the program, noise prediction for a HVAC system is demonstrated.

  • PDF

Prediction of Brittle Failure within Mesozoic Granite of the Daejeon Region (대전지역 중생대 화강암 암반 내 취성파괴 예측연구)

  • Jang, Hyun-Sic;Choe, Mi-Mi;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.25 no.3
    • /
    • pp.357-368
    • /
    • 2015
  • Brittle failure of Mesozoic granite in the Daejeon region is predicted using empirical analysis and numerical modeling techniques. The input parameters selected for these techniques were based on the results of laboratory tests, including damage-controlled tests. Rock masses that were considered to be strong during laboratory testing were assigned to "group A" and those considered to be extremely strong were assigned to "group B". The properties of each group were then used in the analyses. In-situ stress measurements, or the ratio of horizontal to vertical stress (k), were also necessary for the analyses, but no such measurements have been made in the study area. Therefore, k values of 1, 2, and 3 were assumed. In the case of k=1, empirical analysis and numerical modeling show no indication of brittle failure from the surface to1000 m depth. When k=2, brittle failure of the rock mass occurs at depths below 800 m. For k=3, brittle failure occurs at depths below 600 m. Although both the Cohesion Weakening Friction Strengthening (CWFS) and Mohr-Coulomb models were used to predict brittle failure, only the CWFS model performed well in simulating the range and depth of the brittle failure zone.

Uncertainty analysis of BRDF Modeling Using 6S Simulations and Monte-Carlo Method

  • Lee, Kyeong-Sang;Seo, Minji;Choi, Sungwon;Jin, Donghyun;Jung, Daeseong;Sim, Suyoung;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.1
    • /
    • pp.161-167
    • /
    • 2021
  • This paper presents the method to quantitatively evaluate the uncertainty of the semi-empirical Bidirectional Reflectance Distribution Function (BRDF) model for Himawari-8/AHI. The uncertainty of BRDF modeling was affected by various issues such as assumption of model and number of observations, thus, it is difficult that evaluating the performance of BRDF modeling using simple uncertainty equations. Therefore, in this paper, Monte-Carlo method, which is most dependable method to analyze dynamic complex systems through iterative simulation, was used. The 1,000 input datasets for analyzing the uncertainty of BRDF modeling were generated using the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) Radiative Transfer Model (RTM) simulation with MODerate Resolution Imaging Spectroradiometer (MODIS) BRDF product. Then, we randomly selected data according to the number of observations from 4 to 35 in the input dataset and performed BRDF modeling using them. Finally, the uncertainty was calculated by comparing reproduced surface reflectance through the BRDF model and simulated surface reflectance using 6S RTM and expressed as bias and root-mean-square-error (RMSE). The bias was negative for all observations and channels, but was very small within 0.01. RMSE showed a tendency to decrease as the number of observations increased, and showed a stable value within 0.05 in all channels. In addition, our results show that when the viewing zenith angle is 40° or more, the RMSE tends to increase slightly. This information can be utilized in the uncertainty analysis of subsequently retrieved geophysical variables.

Design and Modeling of a 3-DOF Precision Stage for Vibration Isolation (제진을 위한 3 자유도 정밀 스테이지의 설계와 모델링)

  • Moon, Jun-Hee;Kim, Hwa-Soo;Pahk, Heui-Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.124-133
    • /
    • 2007
  • Active vibration isolation systems need the following performance specifications which are different from those of existing positioning systems: usage of seismic sensors, strict suppression of phase lead/lag in signal processing for sensors and actuators, excellent control in low frequency range and so on. In consideration of such specifications, a 3-DOF precision stage for vibration isolation is designed and modeled based on the physical characteristics. Then the major parameters such as spring constants and damping coefficients are valued by the system identification method using empirical transfer function. Finite element analysis is used as a verification and simulation tool throughout this research. This paper lays the foundation for the future research on the control of the active vibration isolation system.