• Title/Summary/Keyword: emotion word

Search Result 188, Processing Time 0.026 seconds

Use of Word Clustering to Improve Emotion Recognition from Short Text

  • Yuan, Shuai;Huang, Huan;Wu, Linjing
    • Journal of Computing Science and Engineering
    • /
    • v.10 no.4
    • /
    • pp.103-110
    • /
    • 2016
  • Emotion recognition is an important component of affective computing, and is significant in the implementation of natural and friendly human-computer interaction. An effective approach to recognizing emotion from text is based on a machine learning technique, which deals with emotion recognition as a classification problem. However, in emotion recognition, the texts involved are usually very short, leaving a very large, sparse feature space, which decreases the performance of emotion classification. This paper proposes to resolve the problem of feature sparseness, and largely improve the emotion recognition performance from short texts by doing the following: representing short texts with word cluster features, offering a novel word clustering algorithm, and using a new feature weighting scheme. Emotion classification experiments were performed with different features and weighting schemes on a publicly available dataset. The experimental results suggest that the word cluster features and the proposed weighting scheme can partly resolve problems with feature sparseness and emotion recognition performance.

Research on Designing Korean Emotional Dictionary using Intelligent Natural Language Crawling System in SNS (SNS대상의 지능형 자연어 수집, 처리 시스템 구현을 통한 한국형 감성사전 구축에 관한 연구)

  • Lee, Jong-Hwa
    • The Journal of Information Systems
    • /
    • v.29 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Purpose The research was studied the hierarchical Hangul emotion index by organizing all the emotions which SNS users are thinking. As a preliminary study by the researcher, the English-based Plutchick (1980)'s emotional standard was reinterpreted in Korean, and a hashtag with implicit meaning on SNS was studied. To build a multidimensional emotion dictionary and classify three-dimensional emotions, an emotion seed was selected for the composition of seven emotion sets, and an emotion word dictionary was constructed by collecting SNS hashtags derived from each emotion seed. We also want to explore the priority of each Hangul emotion index. Design/methodology/approach In the process of transforming the matrix through the vector process of words constituting the sentence, weights were extracted using TF-IDF (Term Frequency Inverse Document Frequency), and the dimension reduction technique of the matrix in the emotion set was NMF (Nonnegative Matrix Factorization) algorithm. The emotional dimension was solved by using the characteristic value of the emotional word. The cosine distance algorithm was used to measure the distance between vectors by measuring the similarity of emotion words in the emotion set. Findings Customer needs analysis is a force to read changes in emotions, and Korean emotion word research is the customer's needs. In addition, the ranking of the emotion words within the emotion set will be a special criterion for reading the depth of the emotion. The sentiment index study of this research believes that by providing companies with effective information for emotional marketing, new business opportunities will be expanded and valued. In addition, if the emotion dictionary is eventually connected to the emotional DNA of the product, it will be possible to define the "emotional DNA", which is a set of emotions that the product should have.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Parting Lyrics Emotion Classification using Word2Vec and LSTM (Word2Vec과 LSTM을 활용한 이별 가사 감정 분류)

  • Lim, Myung Jin;Park, Won Ho;Shin, Ju Hyun
    • Smart Media Journal
    • /
    • v.9 no.3
    • /
    • pp.90-97
    • /
    • 2020
  • With the development of the Internet and smartphones, digital sound sources are easily accessible, and accordingly, interest in music search and recommendation is increasing. As a method of recommending music, research using melodies such as pitch, tempo, and beat to classify genres or emotions is being conducted. However, since lyrics are becoming one of the means of expressing human emotions in music, the role of the lyrics is increasing, so a study of emotion classification based on lyrics is needed. Therefore, in this thesis, we analyze the emotions of the farewell lyrics in order to subdivide the farewell emotions based on the lyrics. After constructing an emotion dictionary by vectoriziong the similarity between words appearing in the parting lyrics through Word2Vec learning, we propose a method of classifying parting lyrics emotions using Word2Vec and LSTM, which classify lyrics by similar emotions by learning lyrics using LSTM.

Developing Korean Affect Word List and It's Application (정서가, 각성가 및 구체성 평정을 통한 한국어 정서단어 목록 개발)

  • Hong, Youngji;Nam, Ye-eun;Lee, Yoonhyoung
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.3
    • /
    • pp.377-406
    • /
    • 2016
  • Current lists of the Korean emotion words either do not consider word frequency, or only include emotion expression words such as 'joy' while disregarding emotion inducing words like 'heaven'. Also, none of the current lists contains the concreteness level of the emotional words. Therefore, the current study aimed to develop a new Korean affect word list that makes up such limitations of the current lists. To do so, in experiment 1, valence, arousal and concreteness ratings of the 450 Korean emotion expression nouns and emotion inducing nouns were surveyed with 399 participants. In addition, in experiment 2, an emotional stroop task was performed with the newly developed word list to test the usefulness of the list. The results showed clear patterns of the congruency effects between emotional words and emotion expressing faces. Increased response times and more errors were found when the emotion of the words and faces are non-matched, than when they were matched. The result suggested that the newly developed Korean affect word list can be effectively adapted to studies examining the influence of various aspects emotion.

Korean Emotion Vocabulary: Extraction and Categorization of Feeling Words (한국어 감정표현단어의 추출과 범주화)

  • Sohn, Sun-Ju;Park, Mi-Sook;Park, Ji-Eun;Sohn, Jin-Hun
    • Science of Emotion and Sensibility
    • /
    • v.15 no.1
    • /
    • pp.105-120
    • /
    • 2012
  • This study aimed to develop a Korean emotion vocabulary list that functions as an important tool in understanding human feelings. In doing so, the focus was on the careful extraction of most widely used feeling words, as well as categorization into groups of emotion(s) in relation to its meaning when used in real life. A total of 12 professionals (including Korean major graduate students) partook in the study. Using the Korean 'word frequency list' developed by Yonsei University and through various sorting processes, the study condensed the original 64,666 emotion words into a finalized 504 words. In the next step, a total of 80 social work students evaluated and classified each word for its meaning and into any of the following categories that seem most appropriate for inclusion: 'happiness', 'sadness', 'fear', 'anger', 'disgust', 'surprise', 'interest', 'boredom', 'pain', 'neutral', and 'other'. Findings showed that, of the 504 feeling words, 426 words expressed a single emotion, whereas 72 words reflected two emotions (i.e., same word indicating two distinct emotions), and 6 words showing three emotions. Of the 426 words that represent a single emotion, 'sadness' was predominant, followed by 'anger' and 'happiness'. Amongst 72 words that showed two emotions were mostly a combination of 'anger' and 'disgust', followed by 'sadness' and 'fear', and 'happiness' and 'interest'. The significance of the study is on the development of a most adaptive list of Korean feeling words that can be meticulously combined with other emotion signals such as facial expression in optimizing emotion recognition research, particularly in the Human-Computer Interface (HCI) area. The identification of feeling words that connote more than one emotion is also noteworthy.

  • PDF

Query-by-emotion sketch for local emotion-based image retrieval (지역 감성기반 영상 검색을 위한 감성 스케치 질의)

  • Lee, Kyoung-Mi
    • Journal of Internet Computing and Services
    • /
    • v.10 no.6
    • /
    • pp.113-121
    • /
    • 2009
  • In order to retrieve images with different emotions in regions of the images, this paper proposes the image retrieval system using emotion sketch. The proposed retrieval system divides an image into $17{\times}17$ sub-regions and extracts emotion features in each sub-region. In order to extract the emotion features, this paper uses emotion colors on 160 emotion words from H. Nagumo's color scheme imaging chart. We calculate a histogram of each sub-region and consider one emotion word having the maximal value as a representative emotion word of the sub-region. The system demonstrates the effectiveness of the proposed emotion sketch and our experimental results show that the system successfully retrieves on the Corel image database.

  • PDF

Detection of Character Emotional Type Based on Classification of Emotional Words at Story (스토리기반 저작물에서 감정어 분류에 기반한 등장인물의 감정 성향 판단)

  • Baek, Yeong Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.131-138
    • /
    • 2013
  • In this paper, I propose and evaluate the method that classifies emotional type of characters with their emotional words. Emotional types are classified as three types such as positive, negative and neutral. They are selected by classification of emotional words that characters speak. I propose the method to extract emotional words based on WordNet, and to represent as emotional vector. WordNet is thesaurus of network structure connected by hypernym, hyponym, synonym, antonym, and so on. Emotion word is extracted by calculating its emotional distance to each emotional category. The number of emotional category is 30. Therefore, emotional vector has 30 levels. When all emotional vectors of some character are accumulated, her/his emotion of a movie can be represented as a emotional vector. Also, thirty emotional categories can be classified as three elements of positive, negative, and neutral. As a result, emotion of some character can be represented by values of three elements. The proposed method was evaluated for 12 characters of four movies. Result of evaluation showed the accuracy of 75%.

Visualization Study of Character Type by Emotion Word Extraction (감정어 추출을 통한 등장인물 성향 가시화 연구)

  • Baek, Yeong Tae;Park, Seung-Bo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.31-32
    • /
    • 2013
  • 본 논문에서는 영화의 등장인물의 성향을 파악하기 위해 시나리오의 대사로부터 감정어를 추출하고, 등장인물의 감정어들을 긍정, 부정, 중립의 3개로 단순화하여 등장인물의 성향을 가시화 시켜주는 방법을 제안한다. 대사로부터 감정어를 추출하기 위해 WordNet 기반의 감정어 추출 방법을 제안한다. WordNet은 단어 간에 상위어와 하위어, 유사어 등의 관계로 연결된 네트워크 구조의 사전이다. 이 네트워크 구조에서 최상위의 감정 항목과의 거리를 계산하여 단어별 감정량을 계산하여 대사를 30 차원의 감정 벡터로 표현한다. 등장인물별로 추출된 감정 벡터를 긍정, 부정, 중립의 3개의 차원으로 단순화 하여 등장인물의 성향을 표현한다.

  • PDF