• Title/Summary/Keyword: emissions

Search Result 5,209, Processing Time 0.031 seconds

The Effect of Olefin Contents on Exhaust Emissions from Gasoline Vehicles (휘발유 차량에서 배출가스에 미치는 올레핀의 영향)

  • Park, Cheonkyu;Jung, Choongsub;Na, Byungki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.37-43
    • /
    • 2014
  • Exhaust emissions were studied as a function of gasoline olefin composition in two vehicles-MPI and GDi engine equipped vehicles. Three different gasolines were tested which varied in olefin contents-12, 16 and 20 vol%. Exhaust emissions in two vehicles were affected by changes in gasoline olefin composition. Responses to changes in olefins were similar in both vehicles : reducing olefins lowered emissions of NOx and CO. Measured exhaust emissions included total hydrocarbons (THC), oxides of nitrogen (NOx), carbon monooxide(CO), carbon dioxide($CO_2$), formaldehyde, benzene, toluene, xylene, 1,3-butadiene and acetylene.

An Effect of Operating Conditions on Exhaust Emissions in a Small Turbocharged D.I. Engine (직접 분사식 소형 과급 디젤엔진의 운전조건이 배기 배출물에 미치는 영향)

  • Jang, S.H.;Koh, D.K.;Ahn, S.K.
    • Journal of Power System Engineering
    • /
    • v.6 no.2
    • /
    • pp.12-17
    • /
    • 2002
  • Recently, the world is faced with very serious problems related to the air pollution due to the exhaust emissions of the diesel engine. So, many of researchers have studied to reduce the exhaust emissions of diesel engine. This study was investigated for various exhaust emissions according to operating conditions in a turbocharged D.I. diesel engine. As a result of experiments in a test engine, the $CO_2\;and\;NO_x$ increased with increasing load, the $CO_2$ and CO decreased with increasing charge air pressure in manifold, the CO decreased with increasing cooling fresh water temperature, and the $NO_x$ decreased with worming cooling fresh water before engine start.

  • PDF

A study of the effects of engine speed and load on diesel emissions (엔진속도와 부하가 디젤 배기가스에 미치는 영향에 관한 연구)

  • 이재순;김승무;서정일
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.47-57
    • /
    • 1982
  • Smoke, Hydrocarbon and Garbon Monoxide emissions of concern in environmental pollution on AVDS-170-2D diesel engine were studied experimentally and past studies on emissions of diesel engine were investigate. Engine speed and load were considered as variable factors influencing the emissions. The test results of a multicylinder, direct injection and turblcharged 4 cycle diesel engine were compared with past studies. Both emission levels of experimental study and past studies were markedly influenced by engine operation factors. The results obtained in this study can be summarized as follows; 1) Smoke intensity is proportional to engine load and varies with engine speed. 2) Hydrocarbon and nitric oxides emissions vary with engine speed and load. 3) Garbon monoxide emission is insensitive to engine speed and varies with engine load.

  • PDF

The Experimental Study of Early Fuel Evaporation Characteristics Gasoline Engine Using Glow-Plug (Glow-Plug를 이용한 가솔린 연료의 조기증발 특성 실험 연구)

  • 문영호;김진구;오영택
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.2
    • /
    • pp.1-10
    • /
    • 2001
  • In order to reduce hydrocarbon emissions of spark ignition engine, it is important not only to improve catalyst conversion efficiency but also to reduce direct engine out hydrocarbon emissions, during cold starting and warm up process. Tjerefore many researchers have been attracted to develop an early fuel evaporator (EFE) by introducing a ceramic heater for a solution of engine out hydrocarbon emissions in SI engine. But, the performance of the EFE in MPI engine to reduce the exhaust emissions and to improve the cold startability has nat been clarified yet. The purpose of this study is to evaluate the feasibility of a glow plug for EFE.

  • PDF

A Study on Engine-Out HC Emissions during Sl Engine Starting (전기점화 기관의 시동 시 미연탄화수소의 배출 특성 연구)

  • 김성수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.22-30
    • /
    • 2003
  • Engine-out HC emissions were investigated during cold and hot start. The tests were conducted according to engine cooling temperatures which were controlled by simulated coolant temperatures of cold and hot start, on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. Real time engine-out HC emissions were measured at a exhaust port and cylinder head using Fast Response Flame Ionization Detector(FRFID). Unburned hydrocarbons emitted at the cold coolant temperature were much higher than those of the hot coolant temperatures. And the main source of the high HC emission was confirmed as misfire at cold coolant temperature. In addition, the effect of intake valve timing on engine-out HC emissions was investigated. The results obtained indicate that optimized intake phasing provides the potential for start-up engine-out HC emissions reduction.

Effects of Suction Air Humidity on the Combustion and Exhaust Emissions Characteristics in Diesel Engine (디젤기관에 있어서 흡기습도 변화가 연소 특성과 배기배출물 특성에 미치는 영향)

  • 임재근;김동호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.421-426
    • /
    • 2000
  • A study on the combustion and exhaust emissions characteristics of diesel engine with various suction air humidity is performed experimentally. In this paper, suction air humidity is changed from RH 50% to RH 90%, the experiments are performed at engine speed 1800rpm, and main measured parameters are cylinder pressure, fuel consumption rate, CO, HC, NOx and Soot emissions etc. Increase of suction air humidity from RH 50% to RH 90% does not effect specific fuel consumption, decreases maximum pressure in cylinder, ratio of maximum pressure rise and net heat release, and delays ignition timing. Also, that increases CO and HC emissions, decreases NOx emissions, but does not constant in changing tendency on emission.

  • PDF

EFFECTS OF SPLIT INJECTION AND OXYGEN-ENRICHED AIR ON SOOT EMISSIONS IN A DIESEL ENGINE

  • Nguyen, Khai;Sung, Nak-Won;Lee, Sang-Su
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2965-2970
    • /
    • 2008
  • Effects of split injection and oxygen-enriched air on soot emissions in a DI diesel engine were studied by the KIVA-3V code. When split injection is applied, the second injection of fuel into a cylinder results in two separate stoichiometric zones which increases soot oxidation. As a result, soot emissions are decreased with split injection. When oxygen-enriched air is applied together with split injection, higher concentration of oxygen helps secondary combustion which results in a higher temperature in the cylinder. The increased temperature promotes growth reaction of acetylene with soot but doesn't improve the acetylene formation during the second injection of fuel. As more acetylene is consumed in the growth reaction of acetylene, the net acetylene mass in the cylinder is decreased, which leads to a decrease of soot formation. With an increase of soot oxidation caused by split injection, the soot emissions are decreased significantly. However, to avoid excessive NOx emissions with increased oxygen concentration, the level of oxygen concentration should be lower than 22% in volume.

  • PDF

A Study on the Effects of Recirculated Exhaust Gas on Soot Emissions in Diesel Engines (디젤기관 매연 배출물에 미치는 재순환 배기의 영향에 관한 연구)

  • Bae, M.W.;Lim, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.142-154
    • /
    • 1998
  • The effects of recirculated exhaust gas on the characteristic of soot emissions have been investigated by using an eight-cylinder, four-stroke, direct injection and water-cooled diesel engine operating at several loads and speeds. The experiments in this study are carried out at the fixed fuel injection timing of $38^{\circ}$ BTDC regardless of experimental conditions. The intake oxygen concentration and the mean equivalence ratio calculated by the intake air flow and fuel consumption rate are used to analyze and discuss the influences of EGR rate on soot emissions. Results of this study indicate that soot emissions increase owing to the drop of intake oxygen concentration and the rise of equivalence ratio as the EGR rate increases at a given engine load and speed, especially the high load.

  • PDF

The Effects of Fuel Injection Skips on the Reduction of Harmful Exhaust Gases during an SI Engine Starting (가솔린 기관의 시동시 연료분사스킵이 유해배출가스 저감에 미치는 영향)

  • Kim, S.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.5-11
    • /
    • 2006
  • During the SI engine starting up, starting conditions directly contribute to the harmful emissions in spark ignition engines. The effects of catalyst temperatures and fuel injection skip methods on HC emissions were investigated. The test was conducted on a 1.5L, 4-cylinder, 16 valve, multipoint-port-fuel-injection gasoline engine. To understand the formation of HC emissions, HC concentration was measured in an exhaust port using a Fast Response Flame Ionization Detector(FRFID). The result showed that HC emissions, which were generated during initial stage of the starting, could be reduced by coolant temperature and fuel injection skips. And through the vehicle test of ECE15+EUDC, it is convinced that the optimized fuel injection skip method according to coolant temperatures have favourable effects on the reduction of harmful exhaust emissions including HC during the SI engine start.

  • PDF

Possible Causes for the Temporal Variations of 3-micron Hydrocarbon Emissions in the Auroral Regions of Jupiter

  • Kim, Sang Joon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2019
  • Recently, temporal variations of the 3-micron emissions of methane and ethane have been detected in the auroral regions of Jupiter observed from Gemini North (Kim et al. 2019, in preparation). These temporal variations of 3-micron hydrocarbon emissions in the auroral regions can be caused by the following phenomena: temporal variations of temperatures, mixing ratios, auroral particle bombardments and Joule heatings, and the combinations of these. Although we are not able to quantitatively determine the cause of the temporal variations at this moment, we will present the following quantitative discussions: thermal influences on the 3-micron emissions, global mixing ratio distributions of the hydrocarbon molecules, and energy distributions of auroral particles penetrating the hydrocarbon layers. We will also present a possible correlation between the temporal variations of the 3-micron emissions and solar wind activities.

  • PDF