• Title/Summary/Keyword: emergy

Search Result 60, Processing Time 0.03 seconds

가막만 패류양식의 지속성에 관한 에머지 평가

  • O, Hyeon-Taek;Lee, Seok-Mo;Lee, Won-Chan;Jeong, Rae-Hong;Park, Jong-Su
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.289-291
    • /
    • 2007
  • 본 연구의 대상해역은 여수반도 남단에 위치한 가막만은 굴을 비롯한 패류양식 생산활동에 기여하는 자연환경의 실질적인 가치와 인간경제 시스템에 대한 EMERGY 분석법으로 평가하고자 한다. 이를 기초로 넙치생산의 지속적인 발전방향을 제시하고자 했다. 2004년 통계를 기준으로 가막만 양식에 유입되는 총 EMERGY의 양은 33.42E+19 sej/yr이고, 이 중 자연환경으로부터 영속성 에너지는 2.95E+20 sej/yr 이며, 주 경제로부터 유입되는 비영속성 에너지는 3.92E+19 sej/yr이다. 자연환경으로부터의 유입이 전체 에너지원의 88%이고, 주 경제로부터의 유입은 12%로서 환경자원에 대한 의존도가 높은 1차 산업의 구조적 특징을 나타내고 있다. Net EMERTY yield ratio는 8.52으로 이는 주 경제로부터 투입된 에너지(비영속성 에너지)에 대해 8배 만큼 수산물을 얻을 수 있는 자원으로서의 가치를 가진다. EMERGY Investment Ratio 0.13은 주 경제로부터 유입된 에너지의 약 7배에 해당하는 에너지를 자연환경에서 얻을 수 있음을 의미한다. EMERGY량이 모두 현재의 EMERGY 생산비대로 생산이 된다는 가정하면 가막만의 패류(굴) 생산량은 환경수용량의 50%정도에도 못 미치는 것으로 나타났다.

  • PDF

Environmental Accounting of the Total Maximum Daily Loads (TMDL) Program in the Nakdong River Basin using the Emergy Analysis (Emergy 분석을 이용한 낙동강유역의 오염총량관리계획에 대한 환경회계)

  • Kim, Jin Lee;Lee, Su-Woong;Kim, Yong-Seok;Lee, Suk-Mo
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.349-356
    • /
    • 2011
  • This study, which evaluated the contribution of the real economic value and system in the Nakdong River Basin, estimated the emergy analysis for environmental accounting of the TMDL program. And an environmental accounting for TMDL is evaluated before and after adopting TMDL program respectively. The value of emergy after adopting the TMDL was 7.90 E+20 sej/yr. Although the real yield of the river after governmental investment was high (before: 9.7118 E+20 sej/yr and after: 9.7224 E+20 sej/yr), the effects of improvement was not great, in terms of an investment cost. The benefit/cost ratio resulted from environmental accounting has decreased from 1.493 to 1.230 due to the cost of managing treatment facilities. The method of improving water quality in the Nakdong River Basin by the TMDL program should be changed into an ecological treatment facilities using resources efficiently from a control of water quality depending on expansion of the wastewater treatment facilities and advanced treatment plant using high cost and non-renewable energies.

Evaluation of Green GDP by Emergy Analysis (Emergy 분석법에 의한 녹색 GDP 산정)

  • Lee, Dong Joo;Jo, Hyo Seon;Lee, Suk Mo
    • Journal of Environmental Science International
    • /
    • v.24 no.9
    • /
    • pp.1139-1144
    • /
    • 2015
  • The gross domestic product(GDP) measures the welfare of a nation's economy through the aggregation of products and services produced in a nation. Although GDP is a proficient measure of the magnitude of the economy, many economists, environmentalists, and citizens have recently criticized the gross domestic product. The criticism stems from the fact that this measurement of domestic product does not account for environmental degradation and resource depletion. We need to estimate the environmentally adjusted net domestic product. The gross domestic product was 913 trillion won while environmental protection expenditure was 32.9 trillion won by monetary accounts of Korea, 2010. Loss of natural assets was 76.6 trillion emwon by emergy analysis of Korea, 2010. The Green GDP was accounted for 88.0% of the GDP to 803.5 trillion won.

Emergy Evaluation Overview of the Natural Environment and Economy of the Han River basin in Korea (한강유역의 자연환경과 사회경제활동에 대한 에머지 평가 - 한강유역 및 한강하구 관리를 위한 정책제언 -)

  • Kang, Dae-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.138-147
    • /
    • 2007
  • An emergy concept was used to evaluate the environment and economy of the Han River basin in Korea and to suggest policy perspectives far the sustainable utilization of its environment and associated estuarine ecosystem. The economy of the basin used $5.19{\times}10^{23}\;sej/yr$ of emergy in 2005. The economy of the Han River basin was heavily dependent on outside energy sources from foreign countries and other parts of Korea, with internal sources, renewable and nonrenewable, contributing only 15.6% to the total emergy use. The basin's trade balance in terms of emergy showed trade surplus, whereas there was a deficit in monetary terms. The population of the Han River basin was far greater than the carrying capacity calculated using the emergy flow, with renewable carrying capacity only at 1.8% of the basin's population and developed carrying capacity at 14.3%. The economy of the basin imposed a substantial stress on its environment, with an environmental loading ratio of 54.8. Overall, the economy of the Han River basin was not sustainable with an emergy sustainability of 0.02. These are reflected in lower quality of living expressed in the emergy term than the national average. Deconcentration of population and economic activities is needed to reduce environmental stress on the environment of the basin and its valuable estuarine ecosystem. Policies to restore ecosystem productivity of the basin are also needed to ensure the sustainability of the basin's economic activities and the sustainable utilization of the Han River estuary. In this regard, it is urgently needed for the Korean government to implement sustainable management measures for the Han River estuary, a well-preserved, productive natural estuarine ecosystem in Korea.

  • PDF

Emergy-Based Value of the Contributions of the Youngsan River Estuary Ecosystem to the Korean Economy (에머지 방법론을 이용한 영산강 하구생태계의 기여 가치 평가)

  • Kang, Daeseok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.13-20
    • /
    • 2013
  • An emergy concept was used to evaluate the contributions of the Youngsan River Estuary to the Korean economy from systems and ecosystem service perspectives. Total emergy input to the estuary was $9.42{\times}10^{20}$ sej/yr with the chemical potential of river inflow accounting for 73% of the total and tidal energy for the remaining 27%, reflecting the unique environmental characteristics of estuaries where rivers meet sea. From the systems perspective, the estuary ecosystem contributed 179.9 billion em\/yr (14.91 million em\/ha/yr or 13,526 em$/ha/yr). Four ecosystem services of the Youngsan River Estuary were selected for the emergy evaluation: fishery production, pollutant removal, aesthetic function, and scientific research information. Aesthetic function contributed the most to the Korean economy with 179.9 billion em\/yr, followed by fishery production (101.1 billion em\/yr), pollutant removal (32.6 billion em\/yr), and scientific research information (934 million em\/yr). Emergy-based values of the selected ecosystem services of the estuary were higher than those calculated by economic methodologies.

Emergy Carrying Capacity of Sungap-do, An Uninhabited Island in Korea (무인도서 선갑도의 에머지 환경수용력 평가)

  • Kang, Dae-Seok
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.1
    • /
    • pp.60-67
    • /
    • 2010
  • For sustainable use of the resources of uninhabited islands of Korea, their ecological economic potential needs to be fully integrated into their management policy and the carrying capacity of the islands should be evaluated before using or developing them. The emergy methodology was used to evaluate the ecological economic value and carrying capacity of Sungap-do which is an uninhabited island in Incheon, Korea. The system boundary for the emergy evaluation of the island included the sea area within 1km from the high tide level, following the management boundary for the uninhabited islands of Korea stipulated in the Law on the Conservation and Management of Uninhabited Islands. The total renewable emergy input to Sungap-do was $1.04{\times}10^{20}$ sej/yr from tidal energy. The annual ecological economic contribution of the island was evaluated high at 29.9 billion Em₩/yr. If Sungap-do were developed to the national average, its carrying capacity was 6,586 persons at the current living standard of Korea. The carrying capacity of Sungap-do for the long-term sustainability scenario was 2,337 persons at the same living standard as in the developed scenario. When only emergy contribution of the land area was considered, the carrying capacity of Sungap-do sharply decreased to 14 persons for the developed scenario and 5 persons for the long-term sustainability scenario. The carrying capacity of the uninhabited islands of Korea including Sungap-do, thus, needs to be considered from the initial stage of utilization or development projects to sustain the ecosystem benefits and their sustainable uses.

Sustainability Evaluation for Shellfish Production in Gamak Bay Based on the Systems Ecology 2. Environmental Accounting for the Improvement of the Natural Environment Based on the Emergy Evaluation (시스템 생태학적 접근법에 의한 가막만 패류생산의 지속성평가 2. 가막만 환경개선에 관한 환경회계)

  • Oh, Hyun-Taik;Lee, Suk-MO;Lee, Won-Chan;Jung, Rae-Hong;Hong, Suk-Jin;Kim, Nam-Kook;Tilburg, Charles
    • Journal of Environmental Science International
    • /
    • v.17 no.8
    • /
    • pp.857-869
    • /
    • 2008
  • The objective of this research is to apply more scientific, quantitative methods and procedures of environmental investigation to the development of the natural environment and the improvement of the human environment during the establishment of a sewage treatment plant and special facilities using environmental accounting. This research was performed to develop a method of strategic environmental assessment on the operation of sewage treatment plant and reuse of shellfish seeding areas through the use of environmental accounting based on EMERGY evaluation. The result was applied to marine environment policy in order to evaluate the real wealth of the regional environment and economy for both the present phase and the proposed developed phase. Using results from the comparison of EMERGY indices between the present situation and future scenarios, cost benefit analysis was performed for three different scenarios: (I) construction of a new sewage treatment plant, (2) relocation and recovery of the shellfish seeding area, and (3) relocation and re-seeding of shellfish area and construction of a new sewage treatment plant. Cost-benefit ratios of the three scenarios are 1.88, 0.94, and 1.38, respectively.