• Title/Summary/Keyword: emerging variants

Search Result 17, Processing Time 0.019 seconds

Next-generation Vaccines for Infectious Viral Diseases (차세대 감염병 백신)

  • Sun-Woo Yoon
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.746-753
    • /
    • 2023
  • Viral infectious diseases have been regarded as one of the greatest threats to global public health. The recent coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a stark reminder of the threat posed by emerging viral infections. Developing and producing appropriate and efficient vaccines and therapeutics are the only options to combat this pandemic. The COVID-19 pandemic has highlighted the need for novel vaccine platforms to control and prevent emerging viral diseases. Conventional vaccine platforms, including live-attenuated vaccine and inactivated vaccines, pose limitations in the speed of vaccine development, manufacturing capacity, and broad protection for emergency use. Interestingly, vaccination with the SARS-CoV-2 vaccine candidate based on the mRNA-lipid nanoparticle (LNP) platform protected against COVID-19, confirming that the nucleoside-modified candidate is a safe and effective alternative to conventional vaccines. Moreover, the prophylactic strategies against the COVID-19 pandemic have been mRNA nucleic acid-based vaccines and nanoparticle-based platforms, which are effective against SARS-CoV-2 and its variants. Overall, the novel vaccine platform has presented advantages compared with the traditional vaccine platform in the COVID-19 pandemic. This review explores the recent advancements in vaccine technologies and platforms, focusing on mRNA vaccines, digital vaccines, and nanoparticles while considering their advantages and possible drawbacks.

Assessment of the anterior loop of the inferior alveolar nerve via cone-beam computed tomography

  • Shaban, Baratollah;Khajavi, Amin;Khaki, Nasim;Mohiti, Yones;Mehri, Tahere;Kermani, Hamed
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.43 no.6
    • /
    • pp.395-400
    • /
    • 2017
  • Objectives: The aim of this study was to evaluate different anatomical variants of the anterior loop of the inferior alveolar nerve (IAN) via cone-beam computed tomography (CBCT). Materials and Methods: CBCT images of 71 patients (36 males and 35 females) were evaluated. We used the classification described by Solar for IAN evaluation. In this classification, three different types of IAN loops were introduced prior to emerging from the mental foramen. We classified patients according to this system and introduced a new, fourth type. Results: Type I was seen in 15 sites (10.6%), type II in 39 sites (27.5%), and type III in 50 sites (35.2%). We found a new type in 38 sites (26.8%) that constituted a fourth type. Conclusion: We found that type III was the most common variant. In the fourth type, the IAN was not detectable because the main nerve was adjacent to the cortical plate and the incisive branch was thinner than the main branch and alongside it. In this type, more care is needed for surgeries including inferior alveolar and mental nerve transposition.

Begomoviruses and Their Emerging Threats in South Korea: A Review

  • Khan, Mohammad Sajid;Ji, Sang-He;Chun, Se-Chul
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.123-136
    • /
    • 2012
  • Diseases caused by begomoviruses (family Geminiviridae, genus Begomovirus) constitute a serious constraint to tropical and sub-tropical agro-ecosystems worldwide. In recent years, they have also introduced in temperate regions of the world where they have great impact and are posing a serious threat to a variety of greenhouse crops. Begomoviral diseases can in extreme cases reduce yields to zero leading to catastrophic losses in agriculture. They are still evolving and pose a serious threat to sustainable agriculture across the world, particularly in tropics and sub-tropics. Till recently, there have been no records on the occurrence of begomoviral disease in South Korea, however, the etiology of other plant viral diseases are known since last century. The first begomovirus infected sample was collected from sweet potato plant in 2003 and since then there has been gradual increase in the begomoviral epidemics specially in tomato and sweet potato crops. So far, 48 begomovirus sequences originating from various plant species have been submitted in public sequence data base from different parts of the country. The rapid emergence of begomoviral epidemics might be with some of the factors like evolution of new variants of the viruses, appearance of efficient vectors, changing cropping systems, introduction of susceptible plant varieties, increase in global trade in agricultural products, intercontinental transportation networks, and changes in global climatic conditions. Another concern might be the emergence of a begomovirus complex and satellite DNA molecules. Thorough understanding of the pathosystems is needed for the designing of effective managements. Efforts should also be made towards the integration of the resistant genes for the development of transgenic plants specially tomato and sweet potato as they have been found to be widely infected in South Korea. There should be efficient surveillance for emergence or incursions of other begomoviruses and biotypes of whitefly. This review discusses the general characteristics of begomoviruses, transmission by their vector B. tabaci with an especial emphasis on the occurrence and distribution of begomoviruses in South Korea, and control measures that must be addressed in order to develop more sustainable management strategies.

Improvement of Attack Traffic Classification Performance of Intrusion Detection Model Using the Characteristics of Softmax Function (소프트맥스 함수 특성을 활용한 침입탐지 모델의 공격 트래픽 분류성능 향상 방안)

  • Kim, Young-won;Lee, Soo-jin
    • Convergence Security Journal
    • /
    • v.20 no.4
    • /
    • pp.81-90
    • /
    • 2020
  • In the real world, new types of attacks or variants are constantly emerging, but attack traffic classification models developed through artificial neural networks and supervised learning do not properly detect new types of attacks that have not been trained. Most of the previous studies overlooked this problem and focused only on improving the structure of their artificial neural networks. As a result, a number of new attacks were frequently classified as normal traffic, and attack traffic classification performance was severly degraded. On the other hand, the softmax function, which outputs the probability that each class is correctly classified in the multi-class classification as a result, also has a significant impact on the classification performance because it fails to calculate the softmax score properly for a new type of attack traffic that has not been trained. In this paper, based on this characteristic of softmax function, we propose an efficient method to improve the classification performance against new types of attacks by classifying traffic with a probability below a certain level as attacks, and demonstrate the efficiency of our approach through experiments.

COVID-19 response survey study on health personnel in Jeju Special Self-governing Province (제주특별자치도 코로나19 대응 보건인력 대상 설문조사 연구)

  • Nam-Hun Kang;Jong-Myon Bae
    • Journal of Medicine and Life Science
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • The purpose of this study is to determine the issues of supplementation and improvement to prepare for the outbreak of new infectious diseases such as new variants of coronavirus disease 2019 (COVID-19) to guide work for a strategic new response to infectious disease. Public officials of Jeju Special Self-governing Province and health personnel responding to COVID-19, working at six public health centers in Jeju-do region were administered a survey about additional preparations to be made in the future, based on the period when COVID-19 was treated legally as a first-class infectious disease. Frequency analysis was conducted on the collected data. The Likert 5-point scale and Kruskal-Wallis test were used to compare the scores for effective response to emerging infectious diseases according to demographics. Among the important factors identified for effective response to new infectious diseases, 'facilitation of cooperation with public institutions' and 'facilitation of cooperation with private institutions' had the highest scores. In the future, when a patient presents with a new infectious disease, the step that needs to be supplemented in each phase of the public health center's response is 'immediate response team operation'. Further, public health centers responded that 'expansion of dedicated personnel related to infectious diseases' needs to be improved to respond to new infectious diseases. Along with the results of this study, considering the difficulties experienced by health personnel responding to new infectious diseases in preparation for future outbreaks of new infectious diseases, and to respond effectively, detailed and clear guidelines for responding to quarantine of patients of new infectious diseases will be needed.

Detection of Cytolethal Distending Toxin and Other Virulence Characteristics of Enteropathogenic Escherichia coli Isolates from Diarrheal Patients in Republic of Korea

  • Kim, Jong-Hyun;Kim, Jong-Chul;Choo, Yun-Ae;Jang, Hyun-Chul;Choi, Yeon-Hwa;Chung, Jae-Keun;Cho, Seung-Hak;Park, Mi-Seon;Lee, Bok-Kwon
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.525-529
    • /
    • 2009
  • Cytolethal distending toxins (CDTs) represent an emerging family of newly described bacterial products that are produced by a number of pathogens. The genes encoding these toxins have been identified as a cluster of three adjacent genes, cdtA, cdtB, and cdtC, plus 5 cdt genetic variants, designated as cdt-I, cdt-II, cdt-III, cdt-IV, and cdt-V, have been identified to date. In this study, a general multiplex PCR system designed to detect Escherichia coli cdts was applied to investigate the presence of cdt genes among isolates. As a result, among 366 E. coli strains, 2.7% were found to carry the cdtB gene. In addition, the use of type-specific primers revealed the presence of cdt-I, cdtIV, and cdt-V types of the cdt gene, yet no cdt-II or cdt-III strains. The presence of other virulence genes (stxl, stx2, eae, bfp, espA, espB, and espD) was also investigated using a PCR assay. Among the 10 cdtB gene-positive strains, 8 were identified as COT-producing typical enteropathogenic E. coli (EPEC) strains ($eae^+$, $bfp^+$), whereas 2 were identified as CDT-producing atypical EPEC strains ($eae^+$, $bfp^-$). When comparing the cytotoxic activity of the CDT-producing typical and atypical EPEC strains, the CDT-producing atypical EPEC strains appeared to be less toxic than the CDT-producing typical EPEC strains.

Low Neutralizing Activities to the Omicron Subvariants BN.1 and XBB.1.5 of Sera From the Individuals Vaccinated With a BA.4/5-Containing Bivalent mRNA Vaccine

  • Eliel Nham;Jineui Kim;Jungmin Lee;Heedo Park;Jeonghun Kim;Sohyun Lee;Jaeuk Choi;Kyung Taek Kim;Jin Gu Yoon;Soon Young Hwang;Joon Young Song;Hee Jin Cheong;Woo Joo Kim;Man-Seong Park;Ji Yun Noh
    • IMMUNE NETWORK
    • /
    • v.23 no.6
    • /
    • pp.43.1-43.10
    • /
    • 2023
  • The continuous emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants has provided insights for updating current coronavirus disease 2019 (COVID-19) vaccines. We examined the neutralizing activity of Abs induced by a BA.4/5-containing bivalent mRNA vaccine against Omicron subvariants BN.1 and XBB.1.5. We recruited 40 individuals who had received a monovalent COVID-19 booster dose after a primary series of COVID-19 vaccinations and will be vaccinated with a BA.4/5-containing bivalent vaccine. Sera were collected before vaccination, one month after, and three months after a bivalent booster. Neutralizing Ab (nAb) titers were measured against ancestral SARS-CoV-2 and Omicron subvariants BA.5, BN.1, and XBB.1.5. BA.4/5-containing bivalent vaccination significantly boosted nAb levels against both ancestral SARS-CoV-2 and Omicron subvariants. Participants with a history of SARS-CoV-2 infection had higher nAb titers against all examined strains than the infection-naïve group. NAb titers against BN.1 and XBB.1.5 were lower than those against the ancestral SARS-CoV-2 and BA.5 strains. These results suggest that COVID-19 vaccinations specifically targeting emerging Omicron subvariants, such as XBB.1.5, may be required to ensure better protection against SARS-CoV-2 infection, especially in high-risk groups.