• Title/Summary/Keyword: embryonic stem cells

Search Result 453, Processing Time 0.029 seconds

In Vitro Differentiation-induced hES Cells Relieve Symptomatic Motor Behavior of PD Animal Model

  • 이창현;김은경;이영재;주완석;조현정;길광수;이금실;신현아;안소연
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.95-95
    • /
    • 2002
  • Human embryonic stem (hES) cells can be induced to differentiate into tyrosine hydroxylase expressing (TH+) cells that may serve as an alternative for cell replacement therapy for Parkinson's disease (PD). To examine in vitro differentiation of hES (MB03, registered in NIH) cells into TH+ cells, hES cells were induced to differentiate according to the 4-/4+ protocol using retinoic acid (RA), ascorbic acid (AA), and/or lithium chloride (LiCl) followed by culture in N2 medium for 14 days, during which time the differentiation occurs. Immunocytochemical stainings of the cells revealed that approximately 21.1% of cells treated with RA plus AA expressed TH protein that is higher than the ratio of TH+ cells seen in any other treatment groups (RA, RA+LiCl or RA+AA+LiCl). In order to see the differentiation pattern in vivo and the ability of in vitro differentiation-induced cells in easing symptomatic motor function of PD animal model, cells (2 $\times$ 10$^{5}$ cells/2${mu}ell$) undergone 4-/4+ protocol using RA plus AA without any further treatment were transplanted into unilateral striatum of MPTP-lesioned PD animal model (C57BL/6). Following the surgery, motor behavior of the animals was examined by measuring the retention time on an accelerating rotar-rod far next 10 weeks. No significant differences in retention time of the animals were noticed until 2 weeks post-graft; however, it increased markedly at 6 weeks and 10 weeks time point after the surgery. Immunohistochemical studies confirmed that a reasonable number of TH+ cells were found at the graft site as well as other remote sites, showing the migrating nature of embryonic stem cells. These results suggest that in viかo differentiated hES cells relieve symptomatic motor behavior of PD animal model and should be considered as a promising alternative for the treatment of PD.

  • PDF

In Vitro Isolation and Proliferation of Mouse Male Germ-Line Stem Cells (생쥐 생식줄기세포의 체외 분리 및 증식)

  • 김수경;김계성
    • Journal of Embryo Transfer
    • /
    • v.18 no.3
    • /
    • pp.243-248
    • /
    • 2003
  • Sperrnatogenesis, the process by which the male germ-line stem cells(GSCs; type A spermatogonia) divide and differentiate to produce the mature spermatozoa, occurs in the seminiferous tubules of the testis. The GSCs proliferate actively to produce two types of cells: other GSCs and differentiating spermatogonia. GSCs have unipotentcy, devoted solely to the generation of sperm. The function of GSCs has broad implications for development, disease, and evolution. Spermatogenesis is fundamental for propagation of species and the defects of this system can result in infertility or disease. The ability to identify, isolate, culture, and alter GSCs will allow powerful new approaches in animal transgenesis and human gene therapy relating to infertility. Until recently, research on stem cells in the testis has been limited because of technical difficulties in isolating and identifying these cell populations. Here, we were trying to find out optimal conditions for in vitro culture of GSCs for identifying and isolating GSCs. We collected mouse GSCs from 3-days old mouse by two-step enzyme digestion method. GSCs were plated and grown on mouse embryonic fibroblasts in Dulbecco's modified Eagle's medium (DMEM) containing 15% fatal bovine serum, 10 mM 2-mercaptoethanol, 1% non-essential amino acids, 1 ng/$m\ell$ bFGF, 10 $\mu$M forskolin, 1500 U/$m\ell$ human recombinant leukemia inhibitory factor (LIF). Over a period 3∼5 days, GSCs gave rise to large multicellular colonies resembling those of mouse pluripotent stem cells. After 5th passages, cells within the colonies continued to be alkaline phosphatase and Oct-4 positive and tested positive against a panel of two immunological markers(Integrin $\alpha$ 6 and Integrin $\beta$ 1) that have been recognized generally to characterize GSCs. SSEA-1, SSEA-3, and SSEA-4 also showed positive signals. Based on our data, these GSCs-derived cultures meet the criteria for GSCs itself and even other pluripotent stem cells. We reported here the establishment of in vitro cultures from mouse male GSCs.

Transduction of eGFP Gene to Human Embryonic Stem Cells and Their Characterization (인간 배아줄기세포로의 eGFP 유전자 도입 및 특성 분석)

  • Kim, Yoon-Young;Ku, Seung-Yup;Park, Yong-Bin;Oh, Sun-Kyung;Moon, Shin-Yong;Choi, Young-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.36 no.4
    • /
    • pp.283-292
    • /
    • 2009
  • Objective: Human embryonic stem cells (hESCs) can proliferate indefinitely and differentiate into all kinds of cell types in vitro. Therefore, hESCs can be used as a cell source for cell-based therapy. Transduction of foreign genes to hESCs could be useful for tracing differentiation processes of hESCs and elucidation of gene function. Thus, we tried to introduce enhanced green fluorescent protein (eGFP) gene to hESCs, XX and XY cell lines in this study. Methods: Lentivirus containing eGFP was packaged in 293T cells and applied to hESCs to transduce eGFP. Expression of transduced eGFP was evaluated under the fluorescence microscope and eGFP positive population was analyzed by FACS. Expression of undifferentiation state markers such as Oct4, Nanog, SSEA4 and Tra-1-81 was examined by RT-PCR and/or immunofluorescence in eGFP-hESCs after transduction. In addition, the ability of eGFP-hESCs to form embryoid bodies (EBs) was tested. Results: eGFP was successfully transduced to hESCs by lentivirus. eGFP expression was stably maintained up to more than 40 passages. eGFP-hESCs retained expression patterns of undifferentiation state markers after transduction. Interestingly, disappearance of transduced eGFP was notably observed during spontaneous differentiation of eGFP-hESCs. Conclusion: We established eGFP expressing hESC lines using lentivirus and showed the maintenance of undifferentiation characteristics of these eGFP-hESCs. This reporter-containing hESCs could be useful for tracing the processes of differentiation of hESCs and other studies.

Distribution of Doublecortin Immunoreactivities in Developing Chick Retina

  • Kim, Young-Hwa;Sun, Woong
    • Applied Microscopy
    • /
    • v.42 no.3
    • /
    • pp.142-146
    • /
    • 2012
  • Doublecortin (DCX) is a microtuble-associated protein that is required for the migration of immature neuroblasts within the chick and mammalian brain. Although it is generally thought that DCX is expressed only in the neuroblasts, some mature neurons maintain DCX expression; for example, horizontal cells in adult rat retina. In this study, we demonstrate that retinal neural progenitors in the early embryonic stage of the chick also expressed DCX, as do developing ganglion cells and horizontal cells in later stages of development. These findings raise the possibility of a role for DCX in retinal neural progenitors, before they become specialized into neuroblasts in the chick.

Enhanced delivery of protein fused to cell penetrating peptides to mammalian cells

  • Moon, Jung-Il;Han, Min-Joon;Yu, Shin-Hye;Lee, Eun-Hye;Kim, Sang-Mi;Han, Kyuboem;Park, Chang-Hwan;Kim, Chun-Hyung
    • BMB Reports
    • /
    • v.52 no.5
    • /
    • pp.324-329
    • /
    • 2019
  • Recent progress in cellular reprogramming technology and lineage-specific cell differentiation has provided great opportunities for translational research. Because virus-based gene delivery is not a practical reprogramming protocol, protein-based reprogramming has been receiving attention as a safe way to generate reprogrammed cells. However, the poor efficiency of the cellular uptake of reprogramming proteins is still a major obstacle. Here, we reported key factors which improve the cellular uptake of these proteins. Purified red fluorescent proteins fused with 9xLysine (dsRED-9K) as a cell penetrating peptide were efficiently delivered into the diverse primary cells. Protein delivery was improved by the addition of amodiaquine. Furthermore, purified dsRED-9K was able to penetrate all cell lineages derived from mouse embryonic stem cells efficiently. Our data may provide important insights into the design of protein-based reprogramming or differentiation protocols.

Lineage Tracing: Computational Reconstruction Goes Beyond the Limit of Imaging

  • Wu, Szu-Hsien (Sam);Lee, Ji-Hyun;Koo, Bon-Kyoung
    • Molecules and Cells
    • /
    • v.42 no.2
    • /
    • pp.104-112
    • /
    • 2019
  • Tracking the fate of individual cells and their progeny through lineage tracing has been widely used to investigate various biological processes including embryonic development, homeostatic tissue turnover, and stem cell function in regeneration and disease. Conventional lineage tracing involves the marking of cells either with dyes or nucleoside analogues or genetic marking with fluorescent and/or colorimetric protein reporters. Both are imaging-based approaches that have played a crucial role in the field of developmental biology as well as adult stem cell biology. However, imaging-based lineage tracing approaches are limited by their scalability and the lack of molecular information underlying fate transitions. Recently, computational biology approaches have been combined with diverse tracing methods to overcome these limitations and so provide high-order scalability and a wealth of molecular information. In this review, we will introduce such novel computational methods, starting from single-cell RNA sequencing-based lineage analysis to DNA barcoding or genetic scar analysis. These novel approaches are complementary to conventional imaging-based approaches and enable us to study the lineage relationships of numerous cell types during vertebrate, and in particular human, development and disease.

Parthenogenetic Mouse Embryonic Stem Cells have Similar Characteristics to In Vitro Fertilization mES Cells (체외수정 유래 생쥐 배아줄기세포와 유사한 특성을 보유한 단위발생 유래 생쥐 배아줄기세포)

  • Park, Se-Pill;Kim, Eun-Young;Lee, Keum-Si;Lee, Young-Jae;Shin, Hyun-Ah;Min, Hyun-Jung;Lee, Hoon-Taek;Chung, Kil-Saeng;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.129-138
    • /
    • 2002
  • Objective: This study was to compare the characteristics between parthenogenetic mES (P-mES) cells and in vitro fertilization mES cells. Materials and Methods: Mouse oocytes were recovered from superovulated 4 wks hybrid F1 (C57BL/6xCBA/N) female mice. For parthenogenetic activation, oocytes were treated with 7% ethanol for 5 min and $5{\mu}g$/ml cytochalasin-B for 4 h. For IVF, oocytes were inseminated with epididymal sperm of hybrid F1 male mice ($1{times}10^6/ml$). IVF and parthenogenetic embryos were cultured in M16 medium for 4 days. Cell number count of blastocysts in those two groups was taken by differential labelling using propidium iodide (red) and bisbenzimide (blue). To establish ES cells, b1astocysts in IVF and parthenogenetic groups were treated by immunosurgery and recovered inner cell mass (ICM) cells were cultured in LIF added ES culture medium. To identify ES cells, the surface markers alkaline phosphatase, SSEA-1, 3,4 and Oct4 staining were examined in rep1ated ICM colonies. Chromosome numbers in P-mES and mES were checked. Also, in vitro differentiation potential of P-mES and mES was examined. Results: Although the cleavage rate (${\geq}$2-cell) was not different between IVF (76.3%) and parthenogenetic group (67.0%), in vitro development rate was significantly low in parthenogenetic group (24.0%) than IVF group (68.4%) (p<0.05). Cell number count of ICM and total cell in parthenogenetic b1astocysts ($9.6{\pm}3.1,\;35.1{\pm}5.2$) were signficantly lower than those of IVF blastocysts ($19.5{\pm}4.7,\;63.2{\pm}13.0$) (p<0.05). Through the serial treatment procedure such as immunosurgery, plating of ICM and colony formation, two ICM colonies in IVF group (mES, 10.0%) and three ICM colonies (P-mES, 42.9%) in parthenogenetic group were able to culture for extended duration (25 and 20 passages, respectively). Using surface markers, alkaline phosphatase, SSEA-l and Oct4 in P-mES and mES colony were positively stained. The number of chromosome was normal in ES colony from two groups. Also, in vitro neural and cardiac cell differentiation derived from mES or P-mES cells was confirmed. Conclusion: This study suggested that P-mES cells can be successfully established and that those cell lines have similar characteristics to mES cells.

Effect of LPS and melatonin on early development of mouse embryo

  • Park, Haeun;Jang, Hoon;Choi, Youngsok
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.183-192
    • /
    • 2022
  • Lipopolysaccharide (LPS) is an endotoxin factor present in the cell wall of Gram-negative bacteria and induces various immune responses to infection. Recent studies have reported that LPS induces cellular stress in various cells including oocytes and embryos. Melatonin (N-acetyl-5-methoxytryptamine) is a regulatory hormone of circadian rhythm and a powerful antioxidant. It has been known that melatonin has an effective function in scavenging oxygen free radicals and has been used as an antioxidant to reduce the cytotoxic effects induced by LPS. However, the effect of melatonin on LPS treated early embryonic development has not yet been confirmed. In this study, we cultured mouse embryos in medium supplemented with LPS or/and melatonin up to the blastocyst stage in vitro and then evaluated the developmental rate. As a result of the LPS-treatment, the rate of blastocyst development was significantly reduced compared to the control group in all the LPS groups. Next, in the melatonin only treated group, there was no statistical difference in embryonic development and no toxic effects were observed. And then we found that the treatment of melatonin improved the rates of compaction and blastocyst development of LPS-treated embryos. In addition, we showed that melatonin treatment decreased ROS levels compared to the LPS only treated group. In conclusion, we demonstrated the protective effect of melatonin on the embryonic developmental rate reduced by LPS. These results suggest a direction to improve reproduction loss that may occur due to LPS exposure and bacterial infection through the using of melatonin during in vitro culture.