• Title/Summary/Keyword: embryogenic calli

Search Result 116, Processing Time 0.022 seconds

Adventitious Shoot and Plant Regeneration from Anther Culture of Hypericum ascyron L. (물레나물 약배양에 의한 부정 신초 및 식물체 재분화)

  • Ko, Jeong-Ae;Kim, Hyun-Soon;Kim, Hyung-Moo
    • Korean Journal of Plant Resources
    • /
    • v.21 no.5
    • /
    • pp.368-373
    • /
    • 2008
  • In order to investigate the effects of low temperature pretreatment of floral bud and plant growth regulators on anther-derived callus and shoot differentiation, anthers were cultured on 1/2 MS medium supplemented with 2,4-D, NAA, BA and TDZ. This plant depends on the plant growth regulators, for these anthers couldn't respond on 1/2 MS medium without plant growth regulators. 2,4-D was a prerequisite substance in this experiment, especially 52.6% of callus formation on MS medium with 2.0mg/L 2,4-D alone. However, the optimum medium was on 1/2 MS medium with 0.1 mg/L 2,4-D and 1.0mg/L BA for continuous growth and shoot differentiation from the anther. Calli derived from on MS medium with 2.0mg/L 2,4-D transferred to the 1/2MS medium with TDZ and BA. TDZ were less superior to BA, only one anther could produce shoot on MS media with 1.0mg/L TDZ. On the other hand, when the calli transferred to the medium with 3.0mg/L BA, adventitious shoots were proliferated, subsequently, regenerated shoots elongated from the embryogenic calli. After floral buds of one week before anthesis were incubated at $5^{\circ}C$ refrigerator for eight or fifteen days, anthers seperated from floral buds were cultured on 1/2MS medium supplemented with 0.1mg/L 2,4-D and 1.0mg/L BA. Callusing and shoot differentiation on anthers from treated at $5^{\circ}C$ for eight days were more effective than those of fifteen days or control.

Development of transgenic cassava plants expressing IbOr gene by somatic embryogenesis (체세포배발생에 의한 IbOr 유전자 형질전환 카사바 개발)

  • Kim, Sun Ha;Kim, Myoung Duck;Park, Sung-Chul;Jeong, Jae Cheol;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.2
    • /
    • pp.88-92
    • /
    • 2015
  • Cassava (Manihot esculenta Crantz) is a useful root crop for food, animal feed and various industrial materials including biofuel. Despite of its importance as an industrial crop, the genetic engineering approaches to manipulate transgenic plant development in cassava are limited. In this study, to develop new cultivar with high level of carotenoids and enhanced tolerance to environmental stresses, sweetpotato IbOr gene involved in accumulation of carotenoids was introduced into an Indonesian IDB high-yielding cassava cultivar under the control of oxidative stress-inducible SWPA2 promoter through Agrobacterium-mediated transformation of friable embryogenic calli. The 19 transgenic lines were successfully generated on the basis of gDNA-PCR and IbOr transcript levels for further characterization in terms of carotenoid contents and environmental stresses. Therefore, IbOr transgenic cassava plants may be developed for enhanced biomass production with high levels of carotenoids on marginal lands.

Plant Regeneration through Somatic Embryogenesis of Leymus chinensis Trin. (양초(Leymus chinensis Trin.)의 체세포배발생에 의한 식물체 재분화)

  • Kim Myoung Duck;Jin Hua;Park Eun-Joon;Kwon Suk-Yoon;Lee Haeng-Soon;Kwak Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.51-55
    • /
    • 2005
  • Chinese leymus (Leymus chinensis Trin.) is a perennial grass that is widely distributed at high pH sodic and arid soil in the northeastern Asia. An efficient regeneration system was established through somatic embryogenesis of mature seeds to understand its high adaptability to harsh environmental conditions on the basis of molecular biology. The calli were efficiently induced (about $70\%$) from mature seeds on MS medium supplemented with $1.5\;\cal{mg/L}$ 2,4-D. Somatic embryos were formed from the surface of embryogenic callus on MS medium supplemented with $2.0\;\cal{mg/L}\;kinetin\;and\;0.5\;\cal{mg/L}$ NAA after 3 weeks of culture. Roots were induced from the shoot when transferred to MS medium without plant growth regulator for 1 week. Plant regeneration rate was $36\%$ and regenerated plantlets were grown to normal mature plants in pot. An efficient plant regeneration system in this study will be useful for molecular breeding of L. chinensis.

Effects of carbohydrates and osmoticum on the somatic embryogenesis and cotyledon morphology of Codonopsis lanceolata L. (더덕의 체세포발생과 자엽형태에 미치는 탄수화물과 삼투제의 영향)

  • Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.179-184
    • /
    • 2020
  • Embryogenic calli from Codonopsis lanceolata L. were cultured in MS liquid media and supplemented with various concentrations of primary carbon sources to study the effects of carbohydrates and osmoticum on somatic embryogenesis and somatic embryo morphology. Sucrose, glucose, and a combination of 3% sucrose and various concentrations of sorbitol or mannitol as osmoticum were used as carbon supplements. The maximum number of somatic embryos per flask was greater in media exclusively supplemented with 3% sucrose (128.29) than exclusively glucose-supplemented media (47.67) and either supplement combination of 3% sucrose and osmoticum (95.67 with mannitol and 114.00 with sorbitol). The number of somatic embryos gradually decreased in media with increasing concentrations of combined osmoticum supplement. Decreases also occurred in the highest concentrations of sucrose- and glucose-supplemented media. The total frequency of somatic embryos with two cotyledons was slightly higher in medium with 3% + mannitol (24.09%) compared with exclusively sucrose (21.52%), glucose (21.22%), or 3% sucrose + sorbitol (22.13%). As concentrations of sucrose and glucose increased, the occurrence of two cotyledons and trumpet cotyledons gradually decreased and the occurrence of polycotyledon and globular stage embryos increased. Furthermore, as concentrations of 3% sucrose and osmoticum increased, the occurrence of trumpet cotyledon and globular stage embryos increased and the occurrence of polycotyledon gradually decreased. These results demonstrated that the somatic embryogenesis and occurrence of cotyledon morphology were influenced by the concentration of carbohydrates and combinations of 3% sucrose and osmoticum supplements.

The development of transgenic maize expressing Actinobacillus pleuropneumoniae ApxIIA gene using Agrobacterium (아그로박테리움을 이용한 Actinobacillus pleuropneumoniae ApxIIA (ApxII toxin) 유전자 발현 옥수수 형질전환체 개발)

  • Kim, Hyun-A;Yoo, Han-Sang;Yang, Moon-Sik;Kwon, Suk-Yoon;Kim, Jin-Seog;Choi, Pil-Son
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.313-318
    • /
    • 2010
  • To develop edible vaccines for swine, the embryogenic calli (type II) derived from HiII genotype were inoculated with A. tumefaciens strain C58C1 containing the binary vector pMYV611, 613, 616, and V621, 622 and 623 respectively. Six of those vectors carry nptII gene which confers resistance to paromomycin and apxIIA gene producing ApxII toxin which is generated in various serum types of A. pleuropneumoniae as a target gene. The 4,120 callus clones for pMYV611, 5,959 callus clones for pMYV613, 7,581 callus clones for pMYV616, 52,329 callus clones for V621, 48,948 callus clones for V622, and 56,188 callus clones for V623 were inoculated. The frequency of positive response clone was confirmed into range of 2.3% - 4.4% for each vectors by NPTII ELISA kit assay, and the selected callus clones of them were finally 3 callus clones from pMYV611 (0.07%), 4 callus clones from pMYV613 (0.07%), 2 callus clones from pMYV616 (0.03%), 51 callus clones from V621 (0.1%), 72 callus clones from V622 (0.15%), and 102 callus clones from V623 (0.18%) respectively. From the selected callus clones of each binary vector, the integration of the apxIIA gene into maize genome was detected from 2 plants of pMYV613 and 2 plants of V623 by Southern blot analysis.

Iron fortification of grains by introducing a recombinant gene of ferritin with seed promoters in rice (종자 특이 프로모터와 대두 Ferritin 유전자에 의한 벼 종실의 철분강화)

  • Cho, Yong-Gu;Kim, Hyung-Keun;Choi, Jang-Sun;Jung, Yu-Jin;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.87-95
    • /
    • 2009
  • The recombinant DNAs, pGBF, pGTF, and pZ4F, using soybean ferritin gene have constructed with the promoters derived from seed proteins, glutelin, globulin, and zein. The recombinant ferritin genes were transformed into rice plant by Agrobacterium-mediated transformation. Iron contents and agronomic traits have been evaluated in the transgenic progenies. The embryogenic calli survived from second selection medium were regenerated at the rates of 19.2% with pGBF, 15.0% with pGTF, and 18.4% with pZ4F in Donganbyeo and 6.7% with pGBF, 11.7% with pGTF, and 3.4% with pZ4F in Hwashinbyeo. The introduction of ferritin gene in putative transgenic rice plants was confirmed by PCR and Southern blot analysis and also the expression of ferritin gene was identified by Northern blot and Western blot analysis. The iron accumulation in transgenic rice grains of the transgenic rice plant, T1-2, with zein promoter and ferritin gene contained 171.4 ppm showing 6.4 times higher than 26.7 ppm of Hwashinbyeo seed as wild type rice, but the transgenic plants with globulin and glutelin showed a bit higher iron contents with a range from 2.1 to 3.0 times compare to wild type grain. The growth responses of transgenic plants showed the large variances in plant height and number of tillers. However, there were some transgenic plants having similar phenotype to wild type plants. In the T1 generation of transgenic plants, plant height, culm length, panicle length, and number of tillers were similar to those of wild type plants, but ripened grain ratio ranged from 53.3% to 82.2% with relatively high variation. The transgenic rice plants would be useful for developing rice varieties with high iron content in rice grains.